& Ref. Ares(2016)528811 - 01/02/2016

Developing Data-Intensive Cloud @
Applications with Iterative Quality
Enhancements

DICE Verification Tools - Initial Version

Deliverable 3.5

Deliverable:
Title:

Editor(s):
Contributor(s):
Reviewers:

Type (R/P/DEC):
Version:

Date:

Status:
Dissemination level:
Download page:
Copyright:

D3.5

Verification Tools - Initial Version

Matteo Rossi.

Marcello M. Bersani, Madalina Erascu, Francesco Marconi
Giuliano Casale, Simona Bernardi

Report

1.0

31-Jan-2016

Final version

Public

http://www.dice-h2020.eu/deliverables/

Copyright © 2016, DICE consortium — All rights reserved

The DICE project (February 2015-January 2018) has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant agreement No. 644869

Executive summary

This document is the first of three deliverables (D3.5, D3.6, and D3.7) reporting the status of the
development activities of the DICE Verification Tool (D-VerT). D-VerT allows application designers to
evaluate their design against user-defined properties, in particular safety ones, such as reachability of
undesired configurations of the system, meeting of deadlines, and so on. More precisely, D-VerT takes a
DICE annotated model and the property to be verified and converts them into a formal model (a temporal
logic model or a First-Order Logic model). Based on the type of property to be verified (in the case of
non-expert users) or on the verification approach the user applies (in case of expert users) the appropriate
verification method is applied. The result is presented in the form of Yes/No answer and in case of No,
the trace of the system that violates it.

D-VerT encompasses the Verifier component composed of two subcomponents DTSM2Json and
Json2MC and utilizes state of the art model checkers, e.g. Zotﬂ MCMTEI and Cubicltﬂ for the actual
formal verification.

In this document, we present the status of the development activities related to task T3.3 and some
instructions install and use the prototype tool that is being developed in the framework of this task. At
this stage, the Json2MC component has been defined, which has the role of translating a DICE Platform
and Technology Specific Model (DTSM), captured through a simple the JSON format, into a formal
model. In addition, we also defined two new models for Storm applications, which have been validated
using D-VerT. This activity required either extending the features of the model checkers, or coming up
with novel ideas how to address scalability.

The current prototype represents a core component of the DICE solution. This document also in-
cludes a coverage assessment of the requirements related to the Verification Tools (which have been
defined in deliverable D1.2).

"https://github.com/fm-polimi/zot
http://users.mat.unimi.it/users/ghilardi/memt/
*http://cubicle.lri.fr/

https://github.com/fm-polimi/zot
http://users.mat.unimi.it/users/ghilardi/mcmt/
http://cubicle.lri.fr/

Glossary

CLTLoc Constraint Linear Temporal Logic over clocks
DAG Directed Acyclic Graph

DICE Data-Intensive Cloud Applications with iterative quality enhancements
DIA Data-Intensive Application

DTSM DICE Platform and Technology Specific Model
DPIM DICE Platform Independent Model

FOL First Order Logic

IDE Integrated Development Environment

JSON JavaScript Object Notation

M2M Model to Model transformation

QA Quality Assurance

SMT Satisfiability Modulo Theories

TL Temporal Logic

UML Unified Modelling Language

Deliverable 3.5. DICE verification tools — Initial version

Contents
[Execufive summary| 3
... 4
Table of Contents|. e 5
List of Figures|. 7
Listof Tableso 7
List of Listings| 7
I Imtroductionl. 8
[I.T Objectives| o e e e e e 8
L2 Motivationl o e e e e 9
1 ructure of th MENt e e 9
2 Requirements and usage scenarios| 10
2.1 Toolsandactorsl. e 10
2.2 Usecasesandrequirements| e 10
B Verification tool overviewl 13
3.1 Model-checking tools| 14
4 Modeling Data-intensive applications| 16
4.1 Reference technology models| o 16
[d.1.1 Terminology| 16
4.2 Modeling assumptions and topology model| 17
[@4.2.1 Topologymodelf 17
4.3 Temporal logicmodell 18
M.3.1 Statemachinel 19
4.3.2 QUEUE OCCUPANCY| . . « v v v e v v e e e e e e e e e e e e e e e e e e e 19
[4.3.3 TImINg CONSIraints|. v v it e e e e e e e e e 20
434 Toolmodification] 20
4.4 First Order Logicmodell 21
5 Verificationin DICE[. 24
[5.1 Architecture and implementationdetails| 24
[5.1.1 Model Configurator] e 24
[5.1.2 Model Templates| 24
[5.1.3 Lisp Formulae expansion| 25
5.2 Verfication workflow| L 26
[5.2.1 Topology Description| 26
[5.2.2 JSONencoding 26
[5.2.3 Outputtrace] e 28
6 Validation| 31
nclusions and futur rksl . .. 33
[/.1 Furtherworkl 33
References oo 35

Copyright © 2016, DICE consortium — All rights reserved 5

Deliverable 3.5. DICE verification tools — Initial version

IA.1 Temporal Logic Model.|
A2 First Order Logic Model.|

Copyright © 2016, DICE consortium — All rights reserved

6

Deliverable 3.5. DICE verification tools — Initial version

Copyright © 2016, DICE consortium — All rights reserved 7

List of Figures
11 Sequence diagram of the interaction between the user and the components in the DICE |
[framework] 13
[2 D-VerT components.|. 14
13 Activity diagram for D-VerT.| 14
|4 Four-layered structure and D-VerT| oo o oL 15
15 Finite state automaton describing the states of abolt.|. 18
|6 Json2MC translating from JSON to verification-ready model files|. 24
|7 DAG representing a simple topology.|. o 27
18 Graphical trace] e 30
9 A simple DIA topology.| 31
|10 First trace showing increasing queue for bolt B3 (parallelismps =1). 31
1T Second trace showing increasing queues for both B3 and B2 (parallelismps =3).| ... 32
List of Tables
11 Requirement coverage atmonth 12.f 33
List of Listings
I Template fragment representing the topology configuration.|. 25
12 Piece of code rendered from the template in Listing|1}| 25
13 Macro defining the processing state of the bolt as described 1n section|4.3.1} 25
4 Formulae generated by expanding the macro in Listing|3[f 26
15 Example JSON file describing a simple topology.|. 27
|6 Fragment of the output trace produced by Zot when the model 1s satisfied.| 28

1 Introduction

The focus of the DICE project is to define a quality-driven framework for developing data-intensive
applications (DIAs) that leverage Big Data technologies hosted in private or public clouds. DICE offers
a novel profile and tools for data-aware quality-driven development. DICE-profiled models are fed into
a set of simulation, verification and optimization tools to obtain high-quality applications. One of these
tools within the DICE framework is the so-called DICE Verification Tool (D-VerT), which allows appli-
cation designers to evaluate their design against user-defined properties, in particular safety ones, such as
reachability of undesired configurations of the system, meeting of deadlines, and so on. This document
describes the initial version of D-VerT, which is developed in the framework of WP3 Task 3.3 and which
is published as an open source tool in the DICE-Verification repository of the project githubﬂ

1.1 Objectives

The goal of WP3 is to develop a quality analysis tool-chain that will be used to guide the early de-
sign stages of DIAs and the evolution of the quality of the application once operational data becomes
available. The main outputs of these tasks are tools (i) for simulation-based reliability and efficiency
assessment, (ii) for formal verification of safety properties related to the sequence of events and states
that the application undergoes, and (iii) numerical optimisation techniques for the search of optimal ar-
chitecture designs. WP3 defines model-to-model (M2M) transformations that accept as input the design
models defined in tasks T2.1 and T2.2 and produce as outputs the analysis models used by the quality
tools.

Task T3.3 focuses on the development of a verification framework to evaluate safety properties of
DIAs specifically related to so-called Big Data topologies. The task also considers the verification of
privacy properties with a low amount of effort.

The outcome of tasks T2.1 and T2.2 are DIA topologies, which consist of two parts, defined in the
DTSM annotated diagrams: (i) the graph-based representation of the topology under analysis and (ii) a
set of user-defined non-functional parameters which complement the graph-based representation and
allow the designer to perform the verification.

This deliverable reports on the activity carried out in Task T3.3, whose goal is to develop and imple-
ment a set of tools (which could be extensions of existing ones) supporting verification of DIA topologies.
Real-time temporal properties are specified through suitable extensions of Linear Time Temporal Logic
and fragments of First-Order Logic (FOL) with arrays. A fundamental goal of T3.3 is the implemen-
tation of a verification environment allowing the DIA designer to easily select the properties to verify
from a list of —possibly predefined— properties concerning the DIA topology. The document provides an
architectural and behavioural description of the tool, which is the reference schema for D1.3 and D1.4
(i.e., architecture definition and integration plan, initial version and final version, respectively). It shows
the model-to-model transformations required to translate a description of a DIA topology into a model
which undergoes verification, a first relevant class of properties to verify, and an initial demonstrator of
the tools being developed in Task T3.3, which implements this translation. The demonstrator provides
an initial working prototype of D-VerT.

The contribution of Task T3.3 consists of the definition of a formal model of DIAs, and of a new
class of non-deterministic models to represent DIAs, which are studied from the point of view of their
theoretical aspects and which are compared with other similar formalisms, e.g., Timed Petri nets [1]] and
Queueing networks [2]]. The peculiarity of the class of models defined in Task T3.3 is their inherent
non-determinism, suitably captured through formalisms such as temporal logic. This complements the
modelling adopted in Task T3.1, which is based on stochastic formalisms, suitable to obtain performance
and optimization analysis and for simulation purposes. The main advantage of using temporal logic
specifications instead of Timed Petri Nets lies in their expressiveness.

* Timed Petri Nets cannot model the following behaviour of a system: an event may (but has not

to) occur in one time unit from the current instant. This result intuitively stems from the urgent

‘https://github.com/dice-project/DICE-Verification

https://github.com/dice-project/DICE-Verification

semantics adopted in almost all the tools and theoretical works for Timed Petri Net [3]. Given
an upper and lower timing bounds a < b, urgent semantics enforces the firing of the transition
labelled with [a,b] no later than b, but at least after a time units after the transition is enabled.
The modelling approach proposed in Section[d] instead, specifies that a failure may (but need not)
occur only after a certain time delay following the previous one.

e The standard semantics of the firings of Timed Petri Nets does not allow the modelling of the
following queue policy: dequeuing always removes the maximum number of available elements in
the queue, but never more than k elements at the same time. The model of Section E]makes use of
this abstraction to represent the behaviour of a node when it extracts new elements from its queue
to process them.

1.2 Motivation

Safety verification of topologies is performed to check the reachability of bad configurations, i.e., a
malfunction of the application which consists of behaviours that do not conform to some non-functional
requirements specified by the QA_ENGINEER. Malfunctions can be generated by various factors in the
deployed application. Task T3.3 focuses on the analysis of the effect of node failures and incorrect design
of timing constraints which might cause the following anomalies: (i) latency in processing tuples, and
(ii) monotonic growth of queues occupancy.

Verification does not consider the cause of a node failure but its effect on the requirements of the
application. After a node failure, the total delay that the topology requires to process one tuple (or a
set of tuples) can exceed the maximum tolerated delay, specified in the requirements of the application,
or the quality of the information processing may degrade. Underestimating the computational power of
nodes also affects the time to process tuples, which then might not meet the timing requirements of the
application, as the processing delay might cause the saturation of queues of the message system. The
analysis does not take into account the quality aspect of the processing, and it focuses instead on the
temporal aspects of the implemented topology.

DICE adopts model checking techniques to verify topologies specified in DTSM diagrams. A verifi-
cation problem is specified by a formal description of the DIA topology and a logical formula represent-
ing the property that its executions must satisfy. The DICE verification activities rely on two approaches:
a fully automatic one based on dense-time temporal logic with discrete variables and realized according
to the bounded model-checking approach; and a semi-automatic one which is a state-based approach re-
lying on FOL over arrays and backward reachability analysis of unsafe states. The verification process is
designed to be carried out in an agile ways; it should allow the DIA designer to perform verification tasks
using a lightweight approach. More precisely, D-VerT fosters an approach whereby formal verification
on DIA applications is launched through interfaces that hide the complexity of the underlying models
and engines. These interfaces allow the user to easily produce the formal model to be verified and the
properties to be checked. This eliminates the need for the user to be an expert of the formal verification
techniques on which D-VerT is founded. In addition, the outcome of the verification process is shown
back to the user in a graphical manner through —possibly UML-compliant— diagrams, as described in the
following sections. Semi-automatic verification, on the other hand, is tailored for advanced users.

1.3 Structure of the document

The structure of this deliverable is as follows. Section [2] recaps the requirements related to the Verifi-
cation Tools. Section [3] discusses the architecture of D-VerT and shows its interaction with the DICE
framework. Section] provides some context about DIAs, the assumptions and the design of the formal
model and its definition in logic. Section [5] discusses the implementation of D-VerT, with particular
focus on the Json2MC component. Section[6|shows some practical experiments to validate the approach
and discusses future achievements. Finally, Appendix [A] provides some additional details on the formal
models.

2 Requirements and usage scenarios

Deliverable D1.2 [4} [5] presents the requirements analysis for the DICE project. The outcome of the
analysis is a consolidated list of requirements and the list of use cases that define the project’s goals.

This section summarizes, for Task T3.3, these requirements and use case scenarios and explains how
they have been fulfilled in the current D-VerT prototype.

2.1 Tools and actors

As specified in D1.2, the data-aware quality analysis aims at assessing quality requirements for DIAs and
at offering an optimized deployment configuration for the application. The assessment elaborates DIA
UML diagrams, which include the definition of the application functionalities and suitable annotations,
including those for verification, and employs the following tools:

* Transformation Tools

 Simulation Tools

* Verification Tools — D-VerT, which takes as input the UML models produced by the application
designers, and verifies the safety and privacy requirements of the DIA.

* Optimization Tools

In the rest of this document, we focus on the tools related to Task T3.3, i.e., D-VerT. According to

deliverable D1.2 the relevant stakeholders are the following:

* QA_ENGINEER — The application quality engineer uses D-VerT through the DICE IDE.

* Verification Tool (D-VerT) — The tool invokes suitable transformations to produce, from the
high-level UML description of the DIA, the formal model to be evaluated. It is built on top of two
distinct engines that are capable of performing verification activities for temporal logic-based mod-
els and FOL-based models, respectively. Such tools are invoked according to the QA_ENGINEER
needs. We later refer to them as TL-solver and FOL-solver, respectively.

2.2 Use cases and requirements

The requirements elicitation of D1.2 considers a single use case that concerns D-VerT, namely UC3.2.
This use case can be summarized as follows [4} p.104]:

ID: uCs3.2

Title: Verification of safety and privacy properties from a DICE UML model

Priority: REQUIRED

Actors: QA_ENGINEER, IDE, TRANSFORMATION_TOOLS, VERIFICA-
TION_TOOLS

Pre-conditions: | There exists a UML model built using the DICE profile. A property to be checked
has been defined through the DICE profile, or at least through the DICE IDE, by
instantiating some pattern.

Post-conditions: | The QA_ENGINEER gets information about whether the property holds for the
modelled system or not

The requirements listed in [4] are the following:

ID: R3.1

Title: M2M Transformation

Priority of accomplishment: | Must have

Description: The TRANSFORMATION_TOOLS MUST perform a model-to-
model transformation, [...] from DPIM or DTSM DICE annotated
UML model to formal model.

ID: R3.2

Title: Taking into account relevant annotations

Priority of accomplishment: | Must have

Description: The TRANSFORMATION_TOOLS MUST take into account the rel-
evant annotations [...] and transform them into the corresponding
artifact [...]

ID: R3.3

Title: Transformation rules

Priority of accomplishment: | Could have

Description: The TRANSFORMATION_TOOLS MAY be able to extract, inter-
pret and apply the transformation rules from an external source.

ID: R3.7

Title: Generation of traces from the system model

Priority of accomplishment: | Must have

Description: The VERIFICATION_TOOLS MUST be able [...] to show possible
execution traces of the system [...]

ID: R3.10

Title: SLA specification and compliance

Priority of accomplishment: | Must have

Description: VERIFICATION_TOOLS [...] MUST permit users to check their
outputs against SLA’s [...]

ID: R3.12

Title: Modelling abstraction level

Priority of accomplishment: | Must have

Description:

Depending on the abstraction level of the UML models (detail of
the information gathered, e.g., about components, algorithms or any
kind of elements of the system we are reasoning about), the TRANS-
FORMATION_TOOLS will create the formal model accordingly,
i.e., at that same level that the original UML model

ID: R3.15
Title: Verification of temporal safety/privacy properties
Priority of accomplishment: | Must have

Description: [...] the VERIFICATION_TOOLS MUST be able to answer [...]
whether the property holds for the modeled system or not.

ID: R3IDE.2

Title: Timeout specification

Priority of accomplishment: | Should have

Description: The IDE SHOULD allow [..] to set a timeout and a maximum
amount of memory [...] when running [...] the VERIFICA-
TION_TOOLS. [...]

ID: R3IDE.4

Title: Loading the annotated UML model

Priority of accomplishment: | Must have

Description: The DICE IDE MUST include a command to launch the [...] VERI-
FICATION_TOOLS [...]

ID: R3IDE.4.1

Title: Usability of the IDE-VERIFICATION_TOOLS interaction

Priority of accomplishment:

Should have

Description: The QA_ENGINEER SHOULD not perceive a difference between
the IDE and the VERIFICATION_TOOL [...]

ID: R3IDE 4.2

Title: Loading of the property to be verified

Priority of accomplishment: | Must have

Description: The VERIFICATION_TOOLS MUST be able to handle [...] proper-
ties [...] defined through the IDE and the DICE profile

ID: R3IDE.5

Title: Graphical output

Priority of accomplishment: | Should have

Description: [...] the IDE SHOULD be able to take the output generated by the
VERIFICATION_TOOLS [...]

ID: R3IDE.S.1

Title: Graphical output of erroneous behaviors

Priority of accomplishment: | Could have

Description:

[...] the VERIFICATION_TOOLS COULD provide [...] an indica-
tion of where in the trace lies the problem

3 Verification tool overview

D-VerT (DICE Verification Tool) is the verification tool integrated in the DICE framework. Verification
is performed on annotated DTSM models which contain all the information required to perform the
analysis. The user selects a —safety/privacy— property to be checked, possibly using templates (which are
compliant with the class of properties specified in the design phase at DPIM level).

The DTSM annotated model and the property to be verified are converted into a formal model that is
suitable for verification. Based on the type of the property to verify (i.e., safety or privacy) and on the type
of model the user specifies (i.e., temporal logic model or FOL model), the tool selects the appropriate
solver. The outcome is sent back to Verifier-GUI and then to the IDE, which presents the result. It shows
whether the property is fulfilled or not; and, if it is violated, the IDE presents the trace of the system that
violates it.

The sequence diagram related to the verification phase which shows the interaction of D-VerT with
two DICE components, IDE and Verifier-GUI, is depicted in Fig.

] sd: Interactian1
(=] -
5 verifier-Gui 5 DverT 5 Zot/MCMT/Cubicle

B, loadModeln

!

!

!

!

|

= |
Interaction with |
Repository is |
|

|

|

|

|

|

|

|

omitted

] B setp, tool}
=
- Verifier-GUI is ar

Eclipse plugin

B, verifylm, p, tool)

=]

D-VerT huilds
model m' for the
selected external
tool

B, runim}

External Tools an
invoked based on
user's choice

< ________________

+-- unsat/satitrace}

=

---------------- e The output from
4-- yes/noltrace) #-- yes/noltrace)} external tool is

decoded and

B, showl)

4 yes/noftrace}

Figure 1: Sequence diagram of the interaction between the user and the components in the DICE frame-
work.

D-VerT is the core component that generates the model to verify. The latter is defined according to
the rationale explained in Sectiond The input of D-VerT is a DTSM annotated diagram and the tool
produces a script file which undergoes verification by means of external model-checkers. D-VerT is
constituted of two subcomponents as shown in Fig. [2]

* DTSM2Json converts DTSM annotated diagrams into an intermediate description of the topology

specified in a JSON file.

» Json2MC instantiates the semantics of the topology specified in the DTSM diagram, according to

the assumptions described in Section4.2]and to the model defined in Section[d.2.1] in a Lisp script

(resp., text file) which contains the temporal logic model (resp., the FOL model).

- DTSM2Json
D-VerT

— Json2MC

Figure 2: D-VerT components.

The activity flow of the components of D-VerT is shown in Fig. 3]

The tool, currently available as a standalone application, will be integrated into the DICE IDE in
future versions, and the user will be able to access its functionalities via the DICE GUI. It will be
possible to graphically define the DTSM model, configure it, annotate it with the desired properties and
run the needed verification tasks. As already mentioned, the outcome of such tasks will be then displayed
directly in the IDE, in order to make the underlying tools transparent to the user, who will not directly
access and manipulate them, and to ensure a uniform user experience.

DTSM2]san JsonZMC TL Solver FOL Solver

{ Convert DTSM to JSON J»

FOL

{Cl!it! FOL model from JSON ‘

Verify
Create TL model from JSON

Verify

ActivityFinal

Figure 3: Activity diagram for D-VerT.

3.1 Model-checking tools

Three external tools performs verification of DTSM diagrams.

. ZotE] is a bounded model checker. It supports different logic languages: its core uses CLTL and
on top of it a fragment of the TRIO metric temporal logic. Zot supports many encodings of
temporal logic as SMT problems by means of plug-ins. It offers three usage modalities. Bounded
satisfiability checking is the one used in the DICE framework: Given a temporal logic formula,
the tool returns either an execution trace of the specified system satisfying it, or unsat, that is, no
counterexample has been found.

. MCMTEI is an infinite-state model checker for checking safety properties of systems manipulat-
ing array variables whose size is a priori unbounded. It provides a declarative way to define
array-based systems such as parametrised, timed, and distributed systems which can then undergo
verification of a safety problem; more precisely, an MCMT model comprises:

Shttps://github.com/fm-polimi/zot
6http ://users.mat.unimi.it/users/ghilardi/mcmt/

https://github.com/fm-polimi/zot
http://users.mat.unimi.it/users/ghilardi/mcmt/

— aset of FOL formulae specifying the transitions of the system and its initial configuration;
— aformula that captures the set of “unsafe” (i.e., undesired) states.
. Cubiclem is similar to MCMT, but it implements a parallel symbolic backward reachability pro-
cedure to determine whether the unsafe states are reachable or not.
All the above tools rely on Satisfiability Modulo Theories (SMT) [6] solvers to carry out the verification
task. In the current setting, Zot invokes Microsoft Z3°, MCMT uses Yicesﬂ whereas Cubicle uses its
own SMT solver which is an extension of Alt-Erg The input language of SMT solvers is standard;
all solvers accept input files which conform to the SMT-LIB 2.0 [[7] standard.

Fig.] shows the four-layered structure of the verification workflow, where D-VerT resides in an
intermediate level between the annotated DTSM and the SMT solvers. While the former layer provides
the input models and receives the verification results, the latter is invoked after the M2M transformation
to run the verification task, whose outcome is then processed back to the DTSM layer.

(Annotated DTSM U

JSON

» : D-VerT
Zot/MCMT script

| Zot UJMCMT

SMT-lib

Figure 4: Four-layered structure and D-VerT.

"mttp://cubicle.lri.fr/
®https://github.com/Z3Prover/z3
http://yices.csl.sri.com/
Yhttp://alt-ergo.lri.fr/

http://cubicle.lri.fr/
https://github.com/Z3Prover/z3
http://yices.csl.sri.com/
http://alt-ergo.lri.fr/

4 Modeling Data-intensive applications

4.1 Reference technology models

Most of the streaming and batch reference technologies can describe applications by means of topologies,
i.e., graphs representing the computation performed by the application. A topology is composed of all
the operations performed in the application algorithm, and it defines which steps can be simultaneously
executed and which are necessarily sequential. The definition of a topology refers to the design phase
and it is part of the outcome of a model-to-model transformation at DTSM level (R2.9, R2.11, R2.12,
etc.). The topology, specified at DTSM level during the design phase, is transformed into the formal
model to be verified through model checking techniques.

Two classes of nodes define a topology. Input nodes are sources of information and they do not have
any role in the definition of the logic of the application. They can be described through the information
related to the stream of data they inject in the topology, and the features of their computation is not
relevant to define the final outcome of the topology. Computational nodes elaborate input data and
produce results which, in turn, are emitted towards other nodes of the topology. A computational node
may represent a thread running on a virtual machine, or even a complex system consisting of a DIA itself.
Assumptions and restrictions that are currently adopted at this stage of the project are detailed later. Non-
functional properties for such nodes are, for instance, the size of data they produce, the emitting rate of
data (or its stochastic distribution along with its average value), the failure rate and so on. Finally, a
topology defines exactly the connections among the nodes which allow the communication based on
message exchange. Therefore, for any node n, it is statically defined at design time (DTSM model)
both the list of nodes subscribing to n - i.e., receiving its emitted messages - and the list of nodes n is
subscribed to.

While in some cases topology graphs can be derived from the application defined in a declarative
way (e.g. in Apache Spark and Apache Flink), other technologies, such as Apache Storm and Apache
Samza, allow users to directly specify the topology. Therefore, they let users define applications in a
compositional way by combining multiple blocks of computation. The rationale behind Big Data frame-
works (pure streaming or batch) found in DIAs may vary from case to case and a unifying approach has
not been adopted yet, although the coexistence of different approaches is common in many applications.
The work described in this document is the result of the analysis of Apache Storm, which is considered
as a reference technology as most of the concepts can be adapted to other frameworks, since the model
is very general.

We remark that the design of the verification tool and the tool itself are independent from the specific
Big Data framework used (Apache Storm at this stage).

4.1.1 Terminology

* Spout: streaming sources which input data into the topology.

* Bolt: processing components of the application.

» Streams: edges connecting spouts and bolts; they define how data flows into the application.
Streams are always point-to-point connections between a sender node (spout or bolt) and a re-
ceiver node (always a bolt).

* Tuple: atomic data emitted or received by spouts and bolts.

* Ack: confirmation message (standing for acknowledgment) notified by a bolt after processing an
input tuple. Acking is active when the topology is set to be reliable. In such topologies, tuples
are associated with a timeout before which they must be acknowledged, otherwise they are newly
emitted by the spouts.

* Failure: temporary or permanent absence of functionality of a bolt. A failure may cause spouts to
newly emit the original tuples.

4.2 Modeling assumptions and topology model

The topology model is constructed under the following assumptions:

. Spoutﬂ do not have any input queue or incoming connection from other computation nodes,
whereas bolts have an internal queue which stores the incoming tuples received from subscribed
nodes of the topology.

* Deployment details, such as, for instance, the number of worker processes and the underlying
architecture, are not consideredPZ]

* All the queues have unbounded size, which is represented by means of a positive integer value.

* The size of tuples is not relevant and is assumed constant for all tuples.

* Each bolt has the following parameters:

— o is a positive real value which abstracts the functionality of a bolt. It expresses a ratio
between the size of the input stream and the outgoing stream. For instance, if a bolt filters
tuples, i.e., the number of incoming tuples is greater than the number of outgoing tuples, then
0<o<1.

— Lenmaz is the maximum allowed size of the queue.

— Takemaz is the maximum number of concurrent threads that may be instantiated in a bolt.
Therefore, an active bolt can remove Takemax tuples from its queue at the same time.

— « is a positive real value which represents the exact amount of time that a bolt requires to
elaborate one tuple.

— rebootTime (min/max) is a positive real value which represents the amount of time that a
bolt requires to restore its functionality after a failure.

— idleTime (max) is a positive real value which represents the amount of time that a bolt may
be idle.

— timeToFailure (min) is a positive real value which represents the amount of time between
two consecutive failures.

* Each spout can emit concurrently at most £ number of tuples.

* The behavior of a bolt is defined by a sequence of five different states ¢dle, execute, take, emit, fail
with the following meaning:

— idle: no tuples are currently processed in the bolt.

— execute: at least one, and at most Takemax tuples, are currently elaborated in the bolt.

— emit: the bolt emits tuple towards all the bolts that are subscribed.

— take: the bolt takes at least one, and at most Takemax, tuples from the queue and initializes
a suitable number of concurrent threads to process them all.

— fail: the bolt is currently failed.

¢ Failures of bolts are promptly recovered locally, i.e., the topology does not have an internal state
to represent the anomaly except the internal state of the node. Moreover, failures are independent
from each other.

Figure [5|shows the automaton defining the behaviour of a bolt.

4.2.1 Topology model

This section provides an informal description of the model, called counter networks, which abstract the
behaviour of a topology. The functional part of a topology, which consists of the algorithm implemented
by the topology itself, is not captured by the model and does not represent the intent of the verification.
Spouts have only two states, respectively, idle and emst, which occur alternatively and not simul-
taneously. When a spout is in state emit an emit action occurs (two or more emit actions may occur
consecutively). A spout has a constant emitting rate which determines the number of emit actions per

!'Spouts might be reading from queuing brokers such as Kafka, RabbitMQ or Kestrel, or from other sources such as Twitter
streaming APIs, but the model represents them as emitting nodes with no queue or storage capability.

'2A worker process executes a subset of a topology and may run one or more executors for one or more components (spouts
or bolts) of this topology. The model does not consider how topologies are implemented into workers and spouts and bolts run
within an environment which is not represented.

Figure 5: Finite state automaton describing the states of a bolt.

time unit. For each emit action a spout may emit from 1 to a maximum of e tuples. Each emit increments
the variable representing the size of all the queues of bolts that have subscribed the emitting spout with
the number of tuples actually emitted. If a node subscribes to more than one node (spouts or bolts) which
emit at the same time, then the size of the queue of that node is incremented accordingly with the sum of
all the emitted tuples.

An active bolt in state take extracts tuples from the queue, i.e., when a take action is performed. The
number of extracted tuples depends on the parallelism level determined by value Takemazx, which can
be different for each bolt. When a fake occurs, the variable representing the size of the queue of a bolt
is decremented by Takemax if the size of the queue is greater than Takemazx, otherwise it is set to 0.
After that, the bolt executes a concurrent processing of the tuples removed from its queue, which lasts
« time units. Finally, o time units later, bolts always emit at most one output tuple depending on the
parameter o. An emit action may not even produce an output, as the ratio o determines the relationship
between the number of tuples received in input and the number of tuples produced in output according to
the relation o = % The value of o is either estimated by monitoring an already deployed application,
or it is defined according to the functionality implemented by the node. Therefore, a bolt generates one
tuple in output only when it concludes the processing of o - n;, tuples taken from the queue. Bolts are
active components that cannot stay in state idle longer than a maximum delay if their queue is not empty.
Therefore, the elapsed time between either the instant when the queue becomes non-empty or a bolt
emits (and its queue is non-empty) and the following fake action is never greater that idleTime.

Bolts may fail, whereas spout failures are not considered in the model. A failure may occur in any
moment and, when it occurs, all tuples in the queue at that moment are lost. The queue occupancy is
then immediately set to 0 and, in the case of a reliable topology, the spouts that are ancestors of the failed
bolt emit a new set of tuples. The size of the set is determined by the values o of the intermediate bolts
between the spout and the failed bolt. The time-to-failure metric, in the current model, is representative
of the minimum time between two consecutive failures.

Bolts behave according to the automaton depicted in Fig. [5]

4.3 Temporal logic model

The temporal logic model is written in Constraint LTL over clocks (CLTLoc) enriched with discrete
counters, an extension of LTL allowing arithmetical variables to occur in atomic formulae. More pre-
cisely, the logic allows for two kinds of atomic formulae:
* atomic formulae over (R, {<,=}) contain arithmetical variables which behave as clocks of Timed
Automata (TA). For instance, a possible atomic formula over clock x is x < 4, where = € R.
* atomic formulae over (N, {<, =}, +,-) contain arithmetical variables without any semantic restric-
tion. For instance, an atomic formula of this second kind is x + y < 4, where both x and y are in

N.
A clock x measures the time elapsed since the last“reset” of x, which occurs when x = 0. Its value can
be compared with constants in constraints of the form = ~ ¢, where c is a constant value in N. A counter
y stores a quantitative value and can be incremented, decremented and tested against a constant value.
Let X be a finite set of clock variables x over R, Y be a finite set of variables over N and AP be a
finite set of atomic propositions p. CLTLoc formulae with counters are defined as follows:

p=plr~cly~c|Xy~z+c|lorng|-¢|Xo|Yo|oUg|pSe

LR N3

where 2 € X, y,z €Y, ce Nand ~¢ {<,=}, X, Y, U and S are the usual “next”, “previous”, “until”
and “since” operators of LTL [1]]. An interpretation of a formula is a mapping associating every variable
v e X UY (resp. constant ¢) with a value in R (resp., N), plus a mapping associating each element i of
N with the subset of propositional letters of AP that hold at that position. The semantics of CLTLoc is
defined as for LTL except for formulae x ~ ¢ and Xy ~ z + c. Intuitively, formula x ~ c states that the
value of clock z is in relation ~ with ¢, and formula Xy ~ z + c states that the next value of variable y is
in relation ~ with z + c.

The satisfiability of CLTLoc formulae can be computed through the Bounded Satisfiability Checking
(BSC) technique implemented in a plugin of the Zot tool called ae?zot (see Section [3| Fig. .

The temporal model defines, through a set of CLTLoc formulae, the behaviour of arbitrary topology
structures, with particular reference to the Apache Storm technology. It defines, for each node, the order
of the actions, the increment/decrement of the queue occupancy, and also additional temporal constraints
concerning the time spent in each state. In this way, when the model to be fed to the tool described in
Section[5]is created, it is possible to configure both the overall structure of the model and several quality
characteristics.

In the next sections we list three formulae exemplifying the possible types of constraints that the
model includes.

4.3.1 State machine

The following formula (where = is the entailment connective and orig marks the initial element O of
the model) specifies the condition for processing, which represents the state of a bolt in which the take,
execute and emit actions can be performed. If a bolt is processing tuples, then state process holds
until the next emit action or until the instant when a failure occurs; in addition, the state holds since the
last take.

(process = process S (take Vv (orig A process)) Aprocess U (emit v fail) A -fail)

4.3.2 Queue occupancy

The size of the queue of a bolt is measured by a positive integer variable g. The value of ¢ is incremented
each time other nodes in the topology send tuples to the bolt, whereas it is decremented when a take
action occurs. To model the arrival of tuples in input, proposition add becomes true when some of the
nodes to which the bolt subscribes emit new tuples. In the first of the next two formulae, variable 7444 is
the number of incoming tuples that a bolt receives when add holds. Therefore, when add holds, but no
take and failures occur at that time, i.e., ~take A =startFailure, then the value of queue in the next
position Xgq is updated with the current value ¢ incremented with 7,44. The second formula defines the
effect of a take action on the next value of ¢ which is determined by the number of incoming tuples that
a bolt receives at that moment, when take occurs, and the number of tuples that are removed from the
queue to initiate a new processing phase (process).

add A —take A ~startFailure = (Xq = ¢+ 7a4a4))

take = (Xq =g+ Tagd — Tprocess)

4.3.3 Timing constraints

To measure the time delay between events we use, for each bolt and spout, a pair of clocks which are
reset alternatively; nevertheless, for the sake of conciseness, the next formulae use a shorthand ¢y, to
indicate the clock of this pair that is relevant in the current instant. Clocks are reset when the associated
monitored event occurs and are tested afterwards, to verify if the delay measured by the clock satisfies
a certain bound. The first formula below defines the condition for resetting clock ¢, this happens
when either a take or a failure occurs, or when the bolt becomes idle. The second formula imposes that
when an emit action occurs, then the duration of the current processing phase is between o — € and « + €,

for a certain positive value e.

(tphase =0) < (origvtake Vv (fail A=Y (fail))v (idle A=Y (idle)))

process Aemit = (¢ >a—€)A(t <a+te)

phase phase

Section [5| describes the component of D-VerT that produces an instance of the entire set of formulae
modelling a topology.

4.3.4 Tool modification

To deal with both discrete counters and clocks in the same CLTLoc specification, as done in the model
of Apache Storm topologies presented above, the implementation of the ae?zot plugin that is capable
of handling CLTLoc formulae must be suitably modified. In fact, clocks and discrete counters obey
different kinds of semantic constraints; for example, whereas all clocks, by definition, advance of the
same quantity (i.e., time changes is a uniform way), the discrete counters evolve independently of one
another. This section briefly hints at the extensions implemented in the ae®zot plugin to take into account
these differences.

First, the method which introduces the semantics constraints on clock variables is modified so as to
avoid defining such constraints for discrete counters. To this end, the interface of the method is changed
from

(defun gen-regions (bound discrete-regions parametric-regions) ...)
to

(defun gen-regions (bound discrete-regions parametric-regions
discrete-counters) ...)

to introduce a new parameter, discrete—-counters, which indicates the list of variables that are
counters over N. Then, the body of the method is modified so as to define temporal constraints for all
variables appearing in the CLTLoc formulae, except for those occurring in list discrete—counters.

In addition, the introduction of discrete counters increases the expressive power of CLTLoc and
makes the logic in general undecidable, so that the procedure implemented in the ae?zot for determining
the satisfiability of a CLTLoc formula might not terminate. Nevertheless, in a best-effort approach, we
can introduce suitable constraints to guarantee the soundness of the result when the procedure terminates
(i.e., to guarantee that a model actually exists when the procedure finds one). More precisely, as custom-
ary in Bounded Satisfiability Checking procedures, we limit the search for models satisfying the given
CLTLoc formula to periodic ones of the form «(s3)“; that is, the procedure looks for models where a
suffix s@ of finite length is repeated infinitely many times after a prefix «. In practice, given a CLTLoc
formula, the ae?zot plugin tries to build a partial model sBs of finite length k + 1, which is represen-
tative of the infinite one where suffix s/ is repeated. To this end, ae?zot imposes suitable constraints at
the two special positions |as| = ijo0p, and |asBs| = k + 1. The tool currently imposes a restrictive set of
constraints, which we will look to relax in future works within Task T3.3. The constraints on positions
iloop and k + 1 that are considered in the procedure to solve the satisfiability of CLTLoc formulae are
defined in a new method, called gen-periodic-arith-terms. In the following snippet, term

is an element from the list periodic-arith-terms containing the variables for which those extra
constraints are required.

(defun gen-periodic—arith-terms (periodic—arith-terms)
(if periodic-arith-terms in periodic-arith-terms
(loop for term in periodic-arith-terms
collect
‘(<= , (call xPROPS+* term (the—-iloop))
, (call xPROPS* term (1+ (kripke—-k *PROPS*)))))))

Finally, the interface of function zot which is invoked in the ae?zot plugin to launch the decision
procedure is modified to allow the caller to specify the list of discrete counters appearing in the formula
through parameter discrete—counters, and the set of counters which require specific constraints,
through parameter periodic-terms.

(defun zot (the-time spec
&key
(smt-solver :z3) (logic :QF_UFIDL) (smt-assumptions nil)
(periodic-terms nil)
(smt—-1ib :smt)
(over—-clocks 0)

(parametric-regions nil)
(discrete—-counters nil)

4.4 First Order Logic model

To complement the temporal logic-based formal semantics of DIAs presented in Section 4.3] an alter-
native one, given in terms of so-called array-based systems has also been defined. Array-based systems
allow users to describe applications that are timed, distributed, and parametrised in the number of pro-
cesses. As such, a model of DIAs based on the formalism of array-based systems can complement a
temporal logic one for its ability to deal with an arbitrary number of processes, a feature that can be used
to capture the parallelism in DIA components such as Apache Storm bolts.

Array-based systems can be formally verified through a decision procedure based on backward reach-
ability. Backward reachability analysis is based on the idea of repeatedly computing the pre-image of the
set of unsafe states (obtained by complementing the property to be verified) and checking for fix-point
and emptiness of the intersection with the set of initial states. This technique can be used to analyse
parametrised systems consisting of a finite (but unknown) number n of identical processes modelled as
extended finite state automata, which manipulate variables whose domains can be unbounded, like inte-
gers. The challenge for parametrised systems in general, and for DIAs in particular, which we want to
tackle in the context of DICE is to check safety properties for any number n of processes.

The specification of an array-based system composed of one array variable a and one transition 7
consists of:

* aformula Init(a) describing the initial sets of states, and

* a transition formula 7(a, a’) relating a with an updated (modified) array variable a’.

A safety or reachability problem for the array based system S = (a, Init, 7) is a formula U (a) specifying
a set of states the system should not be able to reach starting from a state in Init and firing 7 finitely
many times.

Therefore, in order to check the behaviour of an array-based system, we characterized the set of
initial states of the system and the action ordering in the system by a set of transitions. Both the initial
state and the transitions introduce timing constraints for the time spent in each state.

Example of a FOL model. A model of Apache Storm applications should describe the elements of
the topology (spouts, bolts, how bolts are subscribed to spouts and among them, queues associated with
bolts) as well as their behaviour. For example, at time stamp ¢ = 0 the system is in the idle state, that
means all spouts and bolts are in the (I)dle state, the length of the queue associated with each bolt,
the number of tuples processed by each bolt, and the time a spout emits, are all 0. As the time elapses,
the system state should evolve, meaning that the spouts and bolts should change their state according to
Figure 5] The queues should receive tuples from all the spouts and bolts that it is subscribed to and the
tuples processed by each bolt should be computed correctly. Spouts and bolts failures should also be
considered.

We started modelling a simple Storm application composed by n replicas of a topology consisting of
one spout and one bolt. The model is compliant with the terminology and the assumptions introduced in
Section and Section 4.2| respectively, but it does not capture the failures of spouts and bolts. The
state of the spout z is indicated by a variable Spout(x). A spout can be in one of the two states: (E)mit
or (I)dle. The state of the bolt z is indicated by a variable Bolt(z). A bolt can be in one of the four
states: (I)dle (the bolt is not emitting, nor taking, nor executing), (F)mit (it emits tuples to the bolts
which are subscribed to it), T'a(K)e (it takes tuples from the queue associated to the bolt in order to be
processed), (X)ecute (it performs certain operations with the tuples previously taken from the queue).
We also maintain some other variables:

* L(x): the length of the queue associated with the bolt =

e P(x): the number of tuples that were processed by the process z in the bolt B since the last

Ta(K)e
* Stime(x): the time elapsed since the last emission of spout z; the distance between consecutive
emissions of a spout is at least TSZZM time units and at most 722" time units; after T::7°" time
units elapse, another process can operate on the spout.
The initial state of the system is described by the following formula:

t=0 A X(S(a:),B(m) =In L(x),P(x), Stime(x) =0)

meaning that initially the clock is set to 0, the spouts and the bolts are in the (I)dle state, the length of
the queues, the number of tuples processed and the value of sy, are all 0, for all processes x.

The formal description of the topology composed of n replicas of one spout and one bolt is given by
the transition system in Appendix [A] We describe each transition by a logical formula that corresponds
to guarded assignment systems, relating the values of state variables before and after the transition. We
denote by X' the value of the variable X after the execution of the transition. For instance, in the
transition the subformula: ¢ > 0 A ... A flag = 0 represents the guard (precondition) for the state
variables to be updated t' =t + c A ... A canTimeFElapse’ = 1

min

J¢c>0n S(:c):EATSPO“t<stime(x)+c<Tﬁlp£$t A flag=0n
z,c

t' = t+c A
P'(j) = if (B(j) =X and P(j) — Execrate * ¢ >0)
then P(j) — Execrate % c else 0 A (1)
V| Shime(d) = if 7 = z then 0 else syme(j) + ¢
N flag' = 1 A
statechange' = 1 A
canTimeFElapse’ = 1

Note that the updates can be seen to model a broadcast action in a parametrised system. For example, in
the transition below a process x may determine that S(z) changes nondeterministically to state F or I,

while all the other processes do not react by changing their control location in S.

3 statechange =1 A flag=0 A
m’y

statechange’ = 0 A
S'(j) = if j = 2 then (F or I) else S(j) A
V| B'(j)= if (j=yand B(j)=F) then (I or K) else B(j)
! elseif (j =y and B(j) =1) then K else B(j) A

canTimeFElapse’ = 1

Our model should ensure that, for all processes, the length of the queue associated with a bolt does not
exceed the maximum length Lenmaz. Proving this safety property amounts to checking that states that
satisfy the following formula are not reachable, where the formula is the negation of the property we
want to check and describes the sets of unsafe states:

3 L(x) > Lenmax
x

Examples of other interesting safety properties are: if a bolt ¢ emits, then tuples from the correspond-
ing queue will be processed (the bolt will be in the T'a(K)e state); a bolt can not stay in the (I)dle state
indefinitely if its queue is not empty, etc. It is also challenging to check different safety properties on the
assumptions that bolts are either fast/slow compared to the spouts they are subscribed to.

The array-based system model described above can be implemented and validated in state-of-the-art
model checkers (e.g. MCM Cubicl Safarﬁb. We made extensive experiments with MCMT
and Cubicle. The results show that they both can be used for our purposes; however the input language
of Cubicle is simpler, hence the translation activity that must be performed by D-VerT from the JSSON
format to the input language of the tool is simpler. Moreover, Cubicle allows for the definition of
matrices, which can be a suitable abstraction for modelling systems with m spouts and n bolts. Simple
arrays could be used also for this purpose, but they lead to an exponential growth (in the number of
spouts and bolts) of the model and no state-of-the-art tool could be used to perform verification on such
a large model.

The current work in this line of research focusses on modelling Apache Storm topologies with m
spouts and n bolts using matrices.

Bhttp://users.mat.unimi.it/users/ghilardi/mcmt/
Yhttp://cubicle.lri.fr/
Bhttp://verify.inf.usi.ch/content/safari

http://users.mat.unimi.it/users/ghilardi/mcmt/
http://cubicle.lri.fr/
http://verify.inf.usi.ch/content/safari

5 Verification in DICE

This section describes the implementation of component Json2MC of Fig. 2]

In the current version of the D-VerTtool, we focused on an intermediate step of the complete verifi-
cation workflow described in Section [3} that is, from the description of topologies in a JSON format to
the logical model. The component generates, from the JSON representation of the topology and a model
template, the appropriate instance of formal model (in the form of a lisp script), ready to be fed to the
selected external model checking tool.

5.1 Architecture and implementation details

Json2MC has been designed to be extensible and configurable. It is composed of a core component,
Model Configurator, and a set of model templates, which embed the syntax and semantics of the different
models that have to be produced to run formal verification. As depicted in Fig. [6] Model Configurator
reads the topology description encoded in JSON format and instantiates the appropriate formal model by
rendering the selected template, according to the input configuration.

_|

[1+]

Annotated Annotated é
Lisp FOL @
template template iE

Verification Ready
FOL Topology Model

\./

150N
Topology
configuration

INPUT Json2MC QUTPUT

Jojedndyuod
|SPa

Verification Ready
TL Topology Model
{Lisp)

Figure 6: Json2MC translating from JSON to verification-ready model files.

We now provide a brief description of the Model configurator and of the templates; we also show
some details about the Lisp macros mechanisms that we used to generate all the needed model formulae
in a flexible way.

5.1.1 Model Configurator

This component is implemented in Python, and makes use of the J injaﬂ library, an open source templat-
ing engine mainly used in web programming. In order to produce the desired output model, it requires
the definition of a template and a JSON configuration object (or context, in the Jinja2 jargon).

5.1.2 Model Templates

Templates are generally simple text files and they do not require a specific extension. Each template con-
tains variables and expressions, that will be replaced after the rendering process by the values expressed

16jinja .pocoo.org/docs/latest/

jinja.pocoo.org/docs/latest/

O 0 9 O N R W =

O 0 N O R W =

O 0 N N R W =

el e e
O 0 N N kAW = O

in the configuration file, as well as tags, which allow more complex logics such as conditional statements
and filters.

Listing|I|shows a fragment of the temporal logic template file written in Common Lisp and containing
variables and tags (all included in double curly brackets). The corresponding output text (this time
containing only Lisp code), produced from it, is presented in Listing

Listing 1: Template fragment representing the topology configuration.

; TOPOLOGY DEFINITION
(defconstant the-spouts ’ ({{ topology.spouts|join(’ ’, attribute='id’) }}))
(defconstant the-bolts ' ({{ topology.bolts|join(’ ’, attribute='id’) }}))

{% for b in topology.bolts %}
(setf (gethash "{{b.id}} the-topology-table) ’ ({{b.subs | join (" ") }}))
{%endfor%}

Listing 2: Piece of code rendered from the template in Listing [T}

; TOPOLOGY DEFINITION
(defconstant the-spouts ’ (S1 S2))
(defconstant the-bolts ’ (Bl B2 B3))

(setf (gethash "Bl the-topology—-table) ' (S1))
(setf (gethash ’"B2 the-topology-table) ’ (S1 S2))
(setf (gethash B3 the-topology-table) ’ (Bl B2))

5.1.3 Lisp Formulae expansion

In the case of the temporal logic model we devised a double templating layer. In fact, the model config-
urator takes care only of the general settings of the model (topology structure, single nodes parameters,
selected Zot plugin). According to this configuration, the logical formulae are then generated by means
of Lisp’s macro-expansion mechanism. In this way, we were able to write the logical formulae only
once, and replicate them for the needed number of times based on the topology structure.

Listing 3: Macro defining the processing state of the bolt as described in sectiond.3.1]

(defmacro singleBoltsBehaviour (bolts)
Y (&&
, @ (nconc
(loop for i in bolts collect

(-P— , (format nil "PROCESS_~S" 1))

(! (=P— , (format nil "FAIL_"S" 1i)))
(since
(=P- , (format nil "PROCESS_"S" 1i))
(11
(-=P— , (format nil "TAKE_"S" 1))
(&& orig (-P- , (format nil "PROCESS_"S" i)))))
(until
(-P—- , (format nil "PROCESS_"S" 1i))
(11
(-P— , (format nil "EMIT_"S" 1i))
(=P- , (format nil "FAIL_"S" i)))))))

20

[Y B S N S

=

10
11

12
13
14
15

16
17

We can see from Listing [/ how the macro shown in Listing [3]is expanded to apply the formula to the
three bolts B1, B2 and B3.

Listing 4: Formulae generated by expanding the macro in Listing 3]

(=> (-P— "PROCESS_B1")
(&&
(1! (-P— "FAIL_B1"))
(SINCE (-P— "PROCESS_B1") (|| (-P- "TAKE_B1") (&& ORIG (-P— "
PROCESS_B1"))))
(UNTIL (-P— "PROCESS_B1") (|| (-P- "EMIT_B1") (-P— "FAIL_B1")))))
(-> (-P— "PROCESS_B2")
(&&
(1! (=P— "FAIL_B2"))
(SINCE (-P— "PROCESS_B2") (|| (-P- "TAKE_B2") (&& ORIG (-P— "
PROCESS_B2")))) (UNTIL (-P- "PROCESS_B2") (|| (-P- "EMIT_B2") (-

P- "FAIL_B2")))))
(—> (-P— "PROCESS_B3")

(&&
(!'!' (-P- "FAIL_B3"))
(SINCE (-P— "PROCESS_B3") (|| (-P- "TAKE_B3") (&& ORIG (-P— "
PROCESS_B3"))))
(UNTIL (-P- "PROCESS_B3") (|| (-P— "EMIT_B3") (-P- "FAIL_B3"))))))

5.2 Verification workflow

Starting from a simple topology example, we now provide an overview of the workflow going from the
topology representation to the actual verification activity.

5.2.1 Topology Description

The topology in Fig. [/ is composed of two spouts (S1, S2) and three bolts (B1, B2, B3). The spouts
have the same emitting rate, while the bolts have different characteristics. o1 has value 2.0, meaning
that on average, for each input tuple, bolt B1 emits two tuples. This could be the case where a compound
tuple (e.g., containing a list of values) is broken into multiple tuples. Bolt B2 has o2 equal to 0.5, that
is, it could perform a join operation on the input tuples coming from the two spouts. Both bolts take on
average the same time («v) to process a each tuple, and have different parallelism level. Bolt B3 is faster
than the other bolts and has a replication factor of 3.

5.2.2 JSON encoding

The topology presented above, specified through a DTSM diagram, is encoded into a JSON object by
the DTSM2Json component.

As can be noticed from Listing[5] the JSON format allows us to capture in a compact and readable way
all the needed parameters to build the model and run the verification, such as:

* topology-related settings:

— list of spouts with specific parameters:
* emit_rate: spout average emitting rate

— list of bolts with specific parameters:

O 0 N QN R WD =

D = o o s e e e
S O X N NN kR WD = O

emit_rate: 2. op1:2.0

a:5.0

—| 52 B2
. . apo . 0.9
emit_rate: 1.0 parallelism : 2
a:1.0

Figure 7: DAG representing a simple topology.

% subs: the subscription list

* parallelism: level of parallelism chosen for each bolt corresponding to the already
mentioned T'akemax parameter of the model.

* alpha: average processing time for the single tuple (o)
* sigma: operation performed, in terms of output tuples / input tuples ratio (o)

min_ttf: minimum time to failure

— structure of the topology, expressed through the combination of the subscription lists of all

the bolts

* verification-related settings:

queue.

more efficient)

Listing 5: Example JSON file describing a simple topology.

{
"app_name": "Simple Topology",
"description": "",
"version": "O.1",
"topology":{
"spouts": [
{"id":"Sl",

"avg_emit_rate":2.0},
{"id":"SZ",
"avg_emit_rate":1.0}

1,

"bolts": |

i@ g "B1",
"subs": [YSLWY] ,
"alpha": 5.0,
"sigma": 2.0,
"min_ttf": 1000,
"parallelism": 5},
fwie™g "B2",

"SU.bS": ["Sl", "82"],

parallelism : 10

parallelism : 3

num_steps: number of time instants to be explored in the verification phase
periodic_queues: the queues to be monitored for a periodically increasing trend.

queue_threshold: the maximum level of occupancy that should not be exceeded by any

plugin: Zet plugin to be used (ae?zot or its variant ae>bvzot, which can sometimes be

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

~

O 00 39 N W

11
12
13
14
15
16
17
18
19
20

"alpha": 5.0,

"sigma": 0.5,
"min_ttf": 1000,
"parallelism": 10},
{rid": "B3v,
"subs": ["B1", "B2"],
"alpha": 1,0,
"sigma": 0.0,
"min_ttf": 1000,

"parallelism": 3}

] 14
"min_reboot_time":10,
"max_reboot_time":100,
"max_idle_time": 0.01,
"queue_threshold": 20},

"verification_params":{

"plugin" : "aeZbvzot",

"max_time" : 20000,,
"num_steps":10,
"periodic_gueues":["B1", "B2","B3"]}

5.2.3 Output trace

The result of the verification task can be a “counter-example” history representing a computation that
satisfies the conditions imposed (i.e., that violates the desired property), or the message that the model
is unsatisfiable. In all the examples provided in this document, the property we want to verify is that
all the queues are bounded and, for none of them, the level of occupancy exceeds a certain threshold
(queue_threshold) in the number of time instants considered (num_steps). Therefore, satisfying
the model (sat result), means finding an execution where at least one of the queues is unbounded and
exceeds the given threshold level.

In case of a sat outcome, the Zot bounded satisfiability checker provides a very raw textual result
(see Listing [6), which lists the values of all the model variables in the different time steps (numerical
values for discrete counters and clocks, and simply the name of the Boolean variables that are true in
each instant).

Listing 6: Fragment of the output trace produced by Zot when the model is satisfied.

—————— time 1 —————-
STARTIDLE_BI1

TAKE_B?2

IDLE_B1

PROCESS_B2

R_EMIT_S2 = 0

R_PROCESS_B2 = 2

CLOCK_BF_B1 = 999.00333333337

Q. Bl = 1
L EMIT_S1 = 0

QB2 = 2

PT_S2_1 = 2.1033333333?
PT_B1_ 0 = 1.0

PT B2 0 = 2.09666666667

R_EMIT_S1 = O
R_REPLAY_S1 = 0
BUFFER_B3 = 1

21
2
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62

DELTA = 0.0033333333?
R_ADD_B2 = 0

R_ADD_B3 = 0
R_REPLAY S2 = 0
R_FAILURE_B2S1 = 0
R_EMIT B2 = 0

PT_S1_0 = 0.89666666667
R_FAILURE_B2S2 = 0
TOTALTIME = 0.0033333333?
R_PROCESS_B1 = 0
BUFFER_B1 = 0
R_FAILURE_B3S1 = 0
R_EMIT Bl = 0

Q B3 =0

PT_Bl_ 1 = 0.0
CLOCK_BF_B3 = 994.50666666667
PT_S2.0 = 0.89666666667?
R_FAILURE_B3S2 = 0
PT_B3_0 = 2.0
CLOCK_BF_B2 = 995.1
R_ADD_Bl = 0

R_EMIT B3 = 0
R_PROCESS_B3 = 0
PT_B2_1 = 0.0

BUFFER_B2 = 0
PT_S1_1 = 2.1033333333?
I_EMIT_S2 =1

R_FAILURE_BIS1 = 0
PT_B3_1 = 5.1

—————— time 2 ——————
PROCESS_B1

EMIT_S2

TAKE_BI1

ADD_B2

Since these output traces are not very user-friendly and inspecting them in order to better understand
the system behaviour is quite time-consuming, we implemented a new prototype module to present the
traces in a graphical way.

For the time being this functionality simply gets the output trace (in case the model is satisfiable) and
plots the evolutions of the bolt-related variables over time. Figure [§] provides an example of such output
traces. Each of the three plots refers to a specific bolt: queue trends are displayed as solid black line.
Green and red solid lines show the processing activity of the bolts, while the dashed lines illustrate the
incoming tuples from the subscribed nodes (emit events).

This module exploits the python library matplotlib.pypl ot[T_7], a MATLAB-like plotting frame-
work. The plot can be customized via a JSON configuration file that allows users to choose the variables
to be plotted together with the line style. Further development is planned in order to let the trace be
displayed in the DTSM topology diagram once the verification is complete. A possible way to display
the result is by using UML Timing Diagrams.

17http://matplotlib.org/

http://matplotlib.org/

Deliverable 3.5. DICE verification tools — Initial version

B1 profile

25 R_EMIT_S1 |
mm= R PROCESS B1 [

B2 profile

25

R EMIT S1
R EMIT 52
R PROCESS B2 |- oo

20

15 T I

#tuples

w

B3 profile

:
= REMTB1
= REMIT B2
20 {{== r_PROCESS B3

— QB3
g5k
=
5 :
10
/I‘
Sho
’
.
0
o <
of P ™

TOTALTIME

Figure 8: Graphical representation of an output trace.

Copyright © 2016, DICE consortium — All rights reserved

30

Deliverable 3.5. DICE verification tools — Initial version

6 Validation

This section presents the results of the validation activity of the D-VerT tool that was performed through
a simple use case. This was done by running some verification tasks on the DIA topology presented in

Figure

opBq - 2.0
parallelism : 5
a:5.0

emit_rate: 1.

op3:0
— 52 B2 parallelism : 1
a:1.0
; . opB9 - 0.5
emit-rate: 1.0 parallelism : 10
a:5.0

Figure 9: A simple DIA topology.

When running the verification task on the topology configured “as is”, we gathered a counterexample
(see Fig. [I0), showing an increasing trend in the queue of bolt B3 as can be noticed by looking at the
black dotted line on the third plot (B3 profile). So, bolt B3 appears not to be capable of processing the
incoming quantity of messages from bolts B1 and B2, which in fact was the expected behaviour.

B1 profile
T .

T
20 M TREMT ST |

== R PROCESS_B1 : : : : : :
— qsl : : : : : :

REMIT 51
REMIT 52
m= R PROCESS B2

B3 profile
20 = R emm 1]
=+ REMIT_B2
= R_PROCESS_B3
15H— g83
” -
a
5 10
®
5f- B ’I Geeen F
H L4 B :
,” : :
0 :
N > Q > & o o & o ~ v o] e ~
o o) & Pl o P A Ay o Pes o oV 2 '»Q'?’ Q"L

TOTALTIME
Figure 10: First trace showing increasing queue for bolt B3 (parallelismps = 1).

Assuming that the processing time cannot be improved for the function performed by bolt B3 (i.e., a
cannot be lowered) we tried to increase the level of parallelism of the bolt to 3 and rerun the verification
(the possibility of increasing the parallelism is, in fact, another assumption). This time bolt B3 seems
to better handle the incoming load, even though the profile of its queue has a spike in the end. Another
problem is given by the bolt B2, whose queue occupancy level shows a slightly increasing trend.

Copyright © 2016, DICE consortium — All rights reserved 31

Deliverable 3.5. DICE verification tools — Initial version

B1 profile
T

@ . REMIT_S1 ; H ; H
20 Homm RpROGESS B1 [+ -+ oeeefeiens s

B2 profile
T

R_EMIT_S1

20 REMIT_S2

w== R_PROCESS B2

B3 profile
= REMIT_B1 ! I I :
20(-- R EMIT B2
wes R_PROCESS B3 :
T R S i
n :
[} :
s :
3 10
o I e S B S, PELN
0 SEEELY S
S S Sy Q > 4]) N N “d v 2V % © 4
o & ~ ,,)0) N o X ,’;p 6‘) Ad o ,\"> LY & 'Q"Q

TOTALTIME

Figure 11: Second trace showing increasing queues for both B3 and B2 (parallelismps = 3).

Considered this second outcome, we tried to further increase the parallelism of both bolts B2 and B3,
respectively to 12 and 5. With this configuration, we finally obtained an unsat result, that is, no coun-
terexample violating the properties (which are “eventually, the queue occupancy is greater than a fixed
amount”, and “the queues cannot decrease indefinitely”’) was found by the tool.

We also ran verification tasks on more complex topologies inspired by the case studies that are being
considered in the DICE project, in order to understand how the prototype D-VerT tool performs on non-
trivial scenarios. These experiments showed that, as customary for formal verification techniques, the
execution time increases significantly as the size of the analysed topology grows. Part of the future work
on the D-VerT tool, then, will focus on devising ways to mitigate the negative effects of the so-called
state explosion problem when topologies increase in complexity.

Copyright © 2016, DICE consortium — All rights reserved 32

7 Conclusions and future works

In this section we provide a wrap-up of what has been accomplished so far with the development of the
DICE verification framework.

The main achievements of this deliverable in relation to the initial requirements for the tool are shown
in Table[I] The primary focus of our activities was on developing the abstract models representing the
data intensive technologies to be analysed (R3.12). We implemented such models in order to run veri-
fication tasks on them, and we extended existing external tools to let them support the characteristics of
the new models. We designed the models to be configurable and provided a layered structure to facilitate
the future integration with the DICE framework by decoupling the verification layer from the DTSM
diagrams that are still under completion. Currently our tool can be used as a standalone application and
provides a graphical output in order to better understand the output traces returned by the underlying
external tool.

Requirement ID Description Coverage To do

R3.1 M2M Transformation 0 %
Taking into account New annotations for Spark and

R3.2 . 40 % . .
relevant annotations Hadoop. Privacy annotations

R3.3 Transformation Rules 0%

R3.7 Generation of traces from 60 % Integration in the DICE IDE
system model

R3.10 SLA specification and 309% Highlighting violated SLA
compliance

R3.1D Modelline abstract level 40 % New abstraction can be considered

) £ ’ for Spark and Hadoop frameworks
Transformation from UML to

Verification of temporal internal verification model.

R3.15 . . 40 % .
safety/privacy properties Theoretical results on correctness

and completeness.

R3IDE.2 Timeout Specification 50 % Integration in the DICE IDE

R3IDE.4.2 Loadlr‘1g the properties to 40 % Some r‘elevant properties might still
be verified be devised

R3IDE.S Graphical output 60 % Integration in the DICE IDE

R3IDE.5.1 Graphical output of 60% Integration in the DICE IDE

erroneous behaviours

Table 1: Requirement coverage at month 12.

7.1 Further work

Starting from the requirements listed in Table |1} the following items provide an overview of the next
issues to be addressed within Task T3.3 and of the forthcoming work that will be carried out until M24.
IDE. Most of the effort needed to complete the requirements will focus on the integration of the tool

with the DICE framework. All the functionalities under development (R3.7, R3IDE.2, R3IDE4.2,
R3IDE.5, R3IDES.1) need to be made available through the DICE IDE in a transparent way.

R3.1. A key aspect in the integration process is the model to model transformation (R3.1), that will be
addressed by the development of the DTSM2Json component of D-VerT.

R3.2. Additional work will be devoted to the topic of privacy, in order to tackle the problem in a mean-
ingful way and to support new annotations in our models.

R3.10. Further analysis of SLA’s, defined by the designer in the UML models, must be elaborated to
define which requirements can be supported in the DICE framework, beside timing constraints and
the non-functional parameters listed in Sectiond] This will be supported with a deeper analysis of
industrial case-studies of DICE partners and of real implemented applications available on-line.

R3.12. Other relevant technological frameworks, i.e., Spark or Hadoop MapReduce, will be consid-
ered. The TL-model and FOL-model will be either enriched with, or adapted to these additional
technologies. The main aspects to formalize are the management of failures, the definition of
topologies and the behaviour of nodes.

R3.15. The next achievements concerning this requirement are:

* Elaborating a new model perspective (for all the technological frameworks) considering de-
ployment information associated with the nodes in a topology. In particular, modelling the
internals of a single node (i.e., taking into consideration workers, executors and tasks in
a single node) would allow for the definition of an intra-node analysis to complement the
inter-node analysis proposed in this document.

» Message brokers are currently not part of the model, although they have a key role in a big-
data application. Therefore, addressing their functionalities and timing constraints is relevant
for the verification purposes of DICE.

 Further investigations are needed to gain a deeper knowledge of the current model and to get
theoretical results on the correctness and completeness of the verification through CLTLoc.
In particular, a deep analysis of counter networks, introduced in Sectiond] must be completed
in order to compare their expressiveness with respect to Timed Petri Nets.

* New properties of interest, beside those addressed so far on the evolution of the queue occu-
pancy, may also be elicited and included in the model.

References

(1]

(2]

(3]

[4]

[5]

[6]

[7]

Carlo A. Furia et al. Modeling Time in Computing. Monographs in Theoretical Computer Science.
An EATCS Series. Springer, 2012.

Ralph L. Disney and Dieter Konig. Queueing Networks: A Survey of Their Random Processes.
Vol. 27. 3. Society for Industrial and Applied Mathematics, 2006, 335-403. 69 pp.

Beatrice Bérard et al. “Comparison of the Expressiveness of Timed Automata and Time Petri Nets”.
In: Proceedings of the International Conference on Formal Modeling and Analysis of Timed Systems
(FORMATS). 2005, pp. 211-225.

The DICE Consortium. Requirement Specification. Tech. rep. available from www.dice-h2020.eul.
European Union’s Horizon 2020 research and innovation programme, 2015.

The DICE Consortium. Requirement Specification - Companion Document. Tech. rep. available
from www.dice-h2020.eu, European Union’s Horizon 2020 research and innovation programme,
2015.

Clark W Barrett et al. “Satisfiability Modulo Theories.” In: Handbook of satisfiability 185 (2009),
pp- 825-885.

Clark Barrett, Aaron Stump, and Cesare Tinelli. The Satisfiability Modulo Theories Library (SMT-
LIB). www.SMT-LIB.org. 2010.

http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2015/08/D1.2_Requirement-specification.pdf
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2015/08/D1.2_Requirement-specification_Companion.pdf
http://www.SMT-LIB.org

A Details of the Formal Models

A.1 Temporal Logic Model.

A Storm Topology is a directed graph G = {N, E} such that the set of nodes N = SUB includes in
the sets of spouts (S) and bolts (B), while the set of edges E = {Sub; j|i € B,j € {SUB}} defines how
the nodes are connected each other via the subscription relationship. (Sub; ;) is a shortand for “bolt ¢
subscribes to the streams emitted by the spout/bolt j.

Each bolt is represented as a computation node having a receive queue where the tuples to be processed
by it are stored. As already highlighted, spouts do not have such queues. Each spout can either emit
tuples into the topology or being idle. Bolts can be either in idle, processing or failure state. During the
processing phase they read tuples from their receive queues, apply the specific transformation and emit
new output tuples.

The main execution steps of each bolt (respectively spout) are: take () (respectively nextTuple ()),
execute () (respectively transform ())and emit (). These steps are represented in a more generic
way by the propositions:

take; indicates that the take () /nextTuple () step is performed by the ith bolt/spout;
process, corresponds to the execute ()/transform () step performed by the it" bolt/spout;

emit; indicates that bolt ¢ is emitting tuples;

Single node behaviour

Let orig be a shorthand for =Y (T). The formula is true only in the origin. The behaviour of each single
node is defined by the following properties:

/\ (take; = process; A X(—~take;U(emit; v fail;)) A —emit; A Y (—process; S (emit; v orig Vv fail;)))

€B

2
/\ (process; = process; S (take; v (orig A process;)) A process,; U (emit; v fail;) A ~fail;)
€B

3)
/\ (emit; = process; A (orig Vv Y (-emit; S take;)) A X(—process, Utake;)) 4)
€B

N\ (startIdle; <= ((emit; AX(g; >0)) v (-fail; A -process; A ¢ >0A-Y(¢>0Venit;))))
€B

)
N\ (idle; = idle; SstartIdle; A idle; U (take; v fail;) A -fail;) (6)
icB
/é(G (F (emit;))) @)
N (G (F (take;))) ®)
icB

Node Failure

N\ (startFailure; < (=Y (fail;) Afail;))

jeB
N (startFailure; = (/\ (-startFailure;)))
jeB ieB

1#]

Single queue behaviour

Each bolt has a receive queue where the incoming tuples are collected before being read and processed
by the node. The queues have infinite size and the level of occupation of each j** queue is described by
the variable ¢;.

In order to express the connections among nodes in the topology, we defined the set of propositions
Sub(j,i) where i € {SUB} and j € B. Sub(j,7) means that "bolt j submits to the stream emitted by
spout/bolt ¢”. This allows to establish a direct connection between the emission of a tuple by a node and
the arrival of the tuple in the receive queues of the submitting nodes.

We also define In; = {ig,i1,...,%, |[Sub(j,i)} where j € B and i € {SUBJ}, as the set of all the
spouts/bolts whose streams are subscribed by the bolt j (i.e. the nodes whose tuple are sent to the input
queue of the bolt j).

The proposition add; is used to indicate that some of the nodes belonging to In(j) are emitting tuples,
that is, those tuples are added to the receive queue of bolt j.

N\ (add; < \/ enmit;)
jeB ie{SUB}
Sub(4,i)

Rates

To represent the quantities of tuples that are taken/processed/emitted by each node in the topology, we
introduce the concept of rate defined as the quantity of tuples considered in the current time unit”.
We therefore present the following rates:

* Temit,: quantity of tuples emitted in the current time unit by task j.
* Ttake,;: quantity of tuples taken in the current time unit by task j.

* Taqq;: quantity of tuples that are added to the receive queue of task j in the current time unit,
consisting in the sum of all the tuples currently emitted by the tasks belonging to In(7).

Therefore, the behaviour of the queue given the occurrence of adding and/or receiving event is the fol-
lowing:
Naj20
jeB
/\ (add; A ~take; A ~startFailure; = (Xgj = ¢j + T'aqq;))
jeB
/\ (takej = (XQj =dqj +Taad; — Tprocessj))
jeB
/\ (startFailure; = X(g¢; =0))
jeB
Necessary conditions:
A ((Xg; > g;) = add;)
jeB

N ((Xgj < gj) = take; v startFailure;)
jeB

Rates Behaviour

The following properties define the behaviour of rates for all bolts, distinguishing, when needed, between
final ("leaf” node of the topology graph) and non-final bolt. final(%) is equivalent to -3 : Sub(j,1):

/\ (Taga; 20 A Tprocess; > 0 ATenit; > 0 Abuffer; > 0 Arrepay, 0)
jeB

/\ (raddj = Z Temiti)
jeB ie{SUB}
Sub(j,i)
emit;

/}B(raddj >0 < add;)

J€

/}B(processj = Tprocess; > 0)

J€

A\ (’I“processj >0=> ((processj A errocessj = Iprocess,) U (emit; v failj) A (’I“processj >0)S(take; vorig))
jeB

A (Pprocess, =0 <= (origV (-process; A Y (-process; Vemit;)))

jeB

/\ (Temitj = 0)
jeB
final(5)

/\ emit; = /\(remitj <ojbuffer; + dj)

Temit ;

buffer; = Ybuffer; +r , emit ;
(J j ¥ Tprocess,) ((Xbuffer; > buffer; — - JtJ))
1)

/ , ,_ Temit;
ﬁﬁi;?(j) A(remse, > ojbuffer; +d; - 1) (Xbuffer; < buffer; +
-/}9 (memit; = (Temit; = 0 A (Xbuffer; = buffer;)UX(emit;)))
J€
—final(j)

Each bolt has a maximum take rate 7taxe i that limits the number of tuples that can be taken from the
receive queue at any moment. If the elements in the queue are greater than or equal to 7take,; and a take
is performed by the bolt, then exactly ftake]. tuples are taken from the queue. Otherwise, all the tuples
are taken.

/\ ((ta—kej A ftakej 2 qj + Taddj) = (Tprocessj =q;+ Taddj))

jeB

/\ ((takej A ftakej <g;+ 7"addj) = (Tprocessj = 'Ftake]-))

jeB

Since the spouts are modeled as node which only emit tuples into the topology, we only define the

emitting rate Temit; that is composed of the "nominal” emitting rate Temit; (i.e. the emitting rate that the
spout would if no failure ever happened) and the additional rate rai1ure; €xpressing how many tuples
have to be re-emitted by spout j due to failures in the topology. Similarly to the bolt, each spout can emit
up to a maximum quantity of tuple every time, excluding the replay tuples. Such maximum quantity is
expressed by Tepit ;e

A\ (P, 2 0) A st < o) g, 2 0)
jes

/\ (emitj - ('Femitj > 0) N (Temitj = femitj + 7"replayj))
jes

/\ (ﬂemitj = (Temitj = 0))

jes

Failure Propagation

In our model, whenever a node fails, the tuples being processed by the the node, together with the
tuples in its receive queue, are considered as failed (not fully processed by the topology). According to
the reliable implementation of Storm, the spout tuples that generated them must be resubmitted to the
topology.
Since we do not keep track of the single tuples, but we only consider quantities of tuples throughout the
topology, given an arbitrary amount of failed tuples, we can estimate the amount of spout tuples that have
to be re-emitted by the connected spouts.

In order to express this relationship between the failing tuples in a specific (failing) node and the new
tuples having to be re-emitted, we introduce the concept of impact of the node failure with respect to
another (connected) node.

Such impact can be precomputed given the topology and we define it as follows:
tuples_to_be_replayed(i)
failed_tuples(j)

Imp(j,4) ("impact of node j failure on node 7”) is the coefficient expressing the ratio

where j € B is the failing bolt and i € {S' U B} is another node in the topology.

If exist a path path(j,i) = {po,...,pn|ln > 0,po = j,pn = i} connecting the two nodes such that
Vk € [0,n—1]Sub(pg, pr+1), then a failure of node j has an impact on node ¢ and I'mp(j,i) > 0. If such
a path does not exist, Imp(j,i) = 0.

In order to define how to calculate I'mp(j,i) over a generic path we first show how to obtain its value
for two basic cases:

* if two nodes j and ¢ are directly connected:

Sub(j, i) = (Imp(j, i) = 20—

Lke{SUB} Touty
Sub(j,k)

Imp(N

* if the nodes j and ¢ are connected by path passing through another node h:

(Sub(j, h) A Sub(h,i)) = (Imp(j, i) = Imp(j,) - Uih -Imp(h,i))

mp(j. 1)

Tmp(j,h

In general, if there is a path path(j,i) = {po,...,pnln > 1,p0 = j, pn = i} defined as above:

n—1
. 1
Imp(5i) = Imp(po. 1) - TT - Imph i +1)
k=1

Once this coefficient is calculated for all the couples of (bolt, spout) in the topology, it allows to
determine the number of tuples to be re-emitted by each spout after a bolt failure by simply multiplying
the number of failed tuples by the appropriate coefficient.

Failure Rates Behaviour - A (Single bolt formulae)

Treplay; is the quantity of tuples that need to be replayed due to a failure:

/\ (Treplayi = Z Tfailurej; * Imp(jv Z))
€S jeB
Imp(3,i)>0
The impact of failure is therefore employed to calculate raiiure;; for each failing bolt. The behaviour
of Ttailurej; is defined as follows:

/\ ((startFailure; A —emit;) = (Xrtailure;; = I'tailure;; + (45 + Tprocess, * Tadd;))))
Imp(5,i)>0
/\ ((startFailure; A emit;) = (Xrtaiture;; = G5 + Tprocess, * T'add;)
Imp(j,3)>0
/\ ((-startFailure; A emit;) = (Xrfaiture;; = 0))
Imp(3,i)>0
/\ ((~startFailure; A —emit;) = (X7tailure;; = Ttailure;;))
Imp(j,i)>0

Clocks Formulae

In order to represent the duration of the various processing phases of each bolt we introduce different

clocks:
. tghase and tphase measure the duration of the process,, idle; and failj phases for each bolt j
and the time elapsed between one emit; and the next one for each spout ¢.

* clockirainl; measures the time fo failure, i.e. the time elapsing between the end of a failure and
the beginning of the next one for each bolt j.

/\ (tphase =0= X((tphase - O)R(tphase > 0)) (tphase > 0)

je{SUB}
/\ (tphase =0= X((tphase O)R(tphase > 0)))
je{SUB}
Each clock tphaseJ will be initially set to 0. We will use the shortand ¢ ~ ¢ to indicate the

phase;
formula:

0
(tphase >0A (tphase v (tphase > O)S(t hasej)) = tphase]- ~ C)

A

(tphase >0nA (tphase v (tphase > O)S(tphase)) = tphase ~ C)

Reset conditions:

t for bolts - start of processing, failure or idle phase.

phase j

/}B ((tpnase, = 0) <= (origv take; v (fail; A ~Y(fail;)) v (idle; A-Y(idle;))))
JE€

. tphasej for spouts - clock resets every time the corresponding spout emits

AS'((tphasej =0) < emit;)
ie

* clockiprain; (bolts) - time-to-failure clock resets every time a failure ends.

/}B((clockmfaﬂj =0) < (-fail; A=Y (-fail;)))
Je€

Bolt processing duration

Single interval variant (currently used):

(process; A —emit;)U((¢ >aj—€)A(t

A ((process,; =

jeB phase; phase; <aj+ 6) A (failj \ emitj)))

Multiple rate intervals variant:

(processj A Tprocess; = r) =

/\ | (process; A -emit;)U
re(0,7take;] | J€B ((tphasej > proc_times[r][0]) A (tphasej <proc_times[r][1]) A (fail; v emit;))

Failure duration

A

jeBs (failjU((t

fail; =
> MIN REBOOT_TIME;) A (¢

< MAXREBOOT,TIMEJ-) A -failj))

phase; phase;

Idle duration

A

(idle; =
jeB

(idle; U((t < MAX_IDLE TIME;) A (take; v fail;))

phase;

Minimum time to failure

A L=
jeB (_'failjU(C]-Othofailj > MIN_TTF;))

Spout emitting intervals

A

((—emit;Sorig) =
jeS

(ﬂemitjU((tPhasej < proc_times[1][0]) Aemit;)))

A A (emit; A Temit, =7) =
re(Ofome,] \jeS (X(ﬁemitjU((tphasej >proc_times[r][0]) A (tphasej < proc_times[r][1]) Aemit;)))

Possible properties to be verified

* The queue of the bolt j is greater than MAXSIZE

F(q; > MAXSIZE)

* clockyq of bolt i is always less than T and bolt 4 eventually fails and the queue of j is eventually
empty.

G(fail; < clocksaii <T) AF(fail; A q;=0)

* bolt 7 has empty queue but is not failed and the queue remains empty for more than T.

G((q; =0)AY (g; >0) < clock =0))
A
F(qi = 0A=failn(q; =0U(g; = 0 A clock > T)))

A.2 First Order Logic Model.

The formalizatioﬂ consists of the following state variables: ¢ represents real time, flag forces that the
transition oo is fired immediately after 091, statechange allows the system either to change the state (if
the value is set to 1), i.e., o1 is fired, or the time just elapses (if the value is set to 0), S(i) represents a
spout which is multiplied n times for each process i, B(i) represents a bolt which is multiplied n times
for each process i, L(i) is the length of the bolt B in the process i, P (i) contains the number of tuples
that were processed by the process i in the bolt B(7) since last T'a(K)e (by the transitions o3 and oy),
Stime (1) measures the time a spout emits in the process i (a spout emits at least ng;m time units and
at most T;:72" time units; after ;5% another process can operate on the spout), bEmitTakeTime (i)
represents the time elapsed since P (i) = 0 (which can happen when the bolt B(i) is in the (E)mit
or E(X)ecute state, in 03,04,05) and the bolt B(7) is (E)mit, wasBEmitting verifies if a certain
spout was in the (E)mit state in the past, wasBT aking verifies if a a bolt was in the T'a(K)e state,

8For the formalization we used both Cubicle and MCMT. In Cubicle, the model has approximatively the same number of
transitions as the model described informally here, however in MCMT the model is visibly larger in the number of transitions:
case distinctions have to be written explicitly since the tool does not do this automatically

canT'imeFElapse was introduced such that o5 is not fired successively (constant ¢ can be taken as big as
necessary so many o transitions can be composed).
The Init state of the system is described by the following formula.

t, flag, statechange = 0 A

V(S(i),B(i) =1, L(i),P(7),Stime(i), bEmitTakeTime(i) =0) A

7

wasBEmitting, WasBTaking =0 A canTimeFElapse = 1
The set of transitions is described bellow. If a state variable is not mentioned in a transition then it is
assumed to be unchanged.

t, flag, statechange =0 A

V(S(i),B(1) =1, L(i), P(i), Stime(1), bEmitTakeTime(i) =0) A

(2

wasBEmitting, WasBTaking =0 A canTimeElapse = 1

The set of transitions is described bellow. If a state variable is not mentioned in a transition then it is
assumed to be unchanged.

O1g: xﬂy statechange =1 A flag=0 A

statechange’ = 0 A
S'(j) = if j = 2 then (F or I) else S(j) A
V| B'(j) = if (j=yand B(j) = F) then (I or K) else B(j)
! elseif (j =y and B(j) = I) then K else B(j) A

canTimeFElapse’ = 1

O1p HB(IZI):X/\P(.T):O/\

statechange’ = 0 A
v B'(j) = B'(j) = if j = x then F'else B(j) A
i | wasBEmitting' = 1 A

canTimeFElapse’ = 1

oo1: 3 ¢>0 A S@)=EA flag=0 AT < spime(x) + ¢ < TP A
x,c

min

t' = t+c A
flag' = 1 A
statechange’ = 1 A
vl P'(j)= if B(j) = X and P(j) — Execrate ¢ >0
! then P(j) — Execrate * c else 0 A
Spime(J) = if j = 2 then 0 else S¢me(j) + ¢ A

canTimeFElapse’ = 1

o92: 3 ¢>0AS(x)=FE A L(y) +c< LenmazxA flag=1 A

x,y,Cc
flag' = 0 A
statechange’ = 1 A
L'(j) = if j=ythen L(j)+celse L(j) A
canTimeFElapse’ = 1 A

o3 .

o4 -

05 -

3B(z)=K A L(z)>Takemazx A flag=0 A

statechange’ =

B'(j) =

L'(j) =

V| P'(j) =

J bEmitTakeTimer(j) =
wasBTaking' =
canTimeFElapse’ =

0

if j = x then X else B(j)

if j = x then L(j) — Takemax else L(j)
if j = x then Takemax else P(j)

0

1

1

> > > > > >

3 B(z)=K A 0< L(z) < Takemaz A flag=0 A

statechange’ =

B'(j) =

() -

v| P)-

| bEmitTakeTimer(j) =
wasBTaking' =
canTimeFElapse’ =

0

if j = x then X else B(j)
if j = x then O else L(j)
if j = x then L(j) else P(j)
0

1

1

> > > > > >

J¢>0A canTimeFElapse =1 A flag=0 A
(&

t' =
statechange’ =
P'(j) =

Szl%me (.7) =
bEmitTakeTimer(j) =
canTimeFElapse’ =

t+c

1

if (B(j) =X A P(j)- Ezecrate * ¢ >0)
then P(j) — FExecrate * ¢

elseif B(j) # X then P(j) else O

Stime(,j) +cC

bEmitTakeTime(j) + ¢

0

>

	Executive summary
	Glossary
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Objectives
	Motivation
	Structure of the document

	Requirements and usage scenarios
	Tools and actors
	Use cases and requirements

	Verification tool overview
	Model-checking tools

	Modeling Data-intensive applications
	Reference technology models
	Terminology

	Modeling assumptions and topology model
	Topology model

	Temporal logic model
	State machine
	Queue occupancy
	Timing constraints
	Tool modification

	First Order Logic model

	Verification in DICE
	Architecture and implementation details
	Model Configurator
	Model Templates
	Lisp Formulae expansion

	Verification workflow
	Topology Description
	JSON encoding
	Output trace

	Validation
	Conclusions and future works
	Further work

	References
	Details of the Formal Models
	Temporal Logic Model.
	First Order Logic Model.

