

Developing Data-Intensive Cloud

Applications with Iterative Quality

Enhancements

State of the Art Analysis

Deliverable 1.1

Ref. Ares(2015)3227576 - 31/07/2015

Deliverable 1.1. State of the art analysis

Copyright © 2015, DICE consortium – All rights reserved 2

Deliverable: D1.1

Title: State of the Art Analysis

Editor(s): Giuliano Casale (IMP), Tatiana Ustinova (IMP)

Contributor(s): Danilo Ardagna (PMI), Matej Artac (XLAB), Simona Bernardi (ZAR),

Marcello Bersani (PMI), Giuliano Casale (IMP), Pablo Domínguez-Mayo

(ZAR), Ioan Dragan (IEAT), Mădălina Eraşcu (IEAT), Marc Gil (PRO),

Gabriel Iuhasz (IEAT), Pooyan Jamshidi (IMP), Cristophe Joubert (PRO),

José Merseguer (ZAR), Daniel Pop (IEAT), Alberto Romeu (PRO), Matteo

Rossi (PMI), Tatiana Ustinova (IMP), Darren Whigham (FLEXI).

Reviewers: Youssef Ridene (NETF), Ilias Spais (ATC)

Type (R/P/DEC): Report

Version: 1.0

Date: 31-July-2015

Status: Final version

Dissemination level: Public

Download page: http://www.dice-h2020.eu/deliverables/

Copyright: Copyright © 2015, DICE consortium – All rights reserved

DICE partners

ATC: Athens Technology Centre

FLEXI: Flexiant Limited

IEAT: Institutul E Austria Timisoara

IMP: Imperial College of Science, Technology & Medicine

NETF: Netfective Technology SA

PMI: Politecnico di Milano

PRO: Prodevelop SL

XLAB: XLAB razvoj programske opreme in svetovanje d.o.o.

ZAR: Universidad De Zaragoza

The DICE project (February 2015-January 2018) has received funding from the European

Union’s Horizon 2020 research and innovation programme under grant agreement No. 644869

http://www.dice-h2020.eu/deliverables/

Deliverable 1.1. State of the art analysis

Copyright © 2015, DICE consortium – All rights reserved 3

Executive summary
The aim of this deliverable is to review the state-of-the-art in techniques used in the developing of Big Data

applications and related technology offerings that are available on the market. After positioning DICE in

the scope of DevOps and Big Data, the deliverable provides background on Big Data and related software

engineering trends, such as the emergence of the Lamba architecture style.

We then overviewthe state of the art on designing functional and non-functional properties in enterprise

software systems, highlighting gaps towards achieving these goals for data-intensive applications. In

particular, we survey model-driven engineering (MDE) methods, which are the most popular to combine

software design with quality analysis techniques based on formal models for performance, reliability and

verification. We extensively discuss existing UML profiles relevant to software quality assessment and

highlight their gaps in relation to modelling data intensive applications. Editors and modelling tools that

can process such UML profiles are also surveyed and compared.

We then overview the problem of deploying, monitoring and testing an enterprise cloud application, and

review existing technologies and open source tools in this area. It is found that some areas, such as non-

functional testing, are fairly under-developed in Big Data and thus offer an opportunity for innovation.

In the last part of the deliverable we summarize some relevant Big Data technologies (e.g.,

Hadoop/MapReduce, Spark, Storm, etc.) and related commercial and open source implementations. For

each technology, we highlight quality metrics that may be considered by the DICE monitoring, prediction

and analysis tools.

Deliverable 1.1. State of the art analysis

Copyright © 2015, DICE consortium – All rights reserved 4

Table of contents

EXECUTIVE SUMMARY ... 3

TABLE OF CONTENTS .. 4

LIST OF FIGURES ... 9

LIST OF TABLES ... 9

INTRODUCTION ... 11

A. DATA-INTENSIVE APPLICATIONS ... 12

A.1. Definitions and terminology. ...12

A.2. Importance of Big Data for the Business ...12

A.3. Roles in Big Data Systems ...13

A.4. Technology Overview ..14

A.4.1 Distributed computations ...14

A.4.2 Distributed Storage and NoSQL solutions ...14

A.4.3 Streams and Big Data in motion ..15

A.5. Architectural Styles for DIAs ..15

A.5.1 Lambda Architecture..15

A.5.1.1. Coordination Layer ..16

A.5.1.2. Batch Layer ..17

A.5.1.3. Speed Layer ...17

A.5.1.4. Orchestration ..17

A.5.1.5. Serving Layer ...17

A.5.1.6. Academic and industrial positioning ..17

A.5.1.7. Oryx: an example Lambda Architecture ..18

A.5.2 Other Architectures ..19

B. DEVOPS .. 21

B.1. Introduction. ...21

B.2. Short introduction to DevOps ..22

B.3. Functional modelling ...24

B.3.1 Overview ..24

B.3.2 MDE and domain-specific model-driven approaches ..25

B.3.3 UML, MARTE and DAM ..27

B.3.3.1. Domain-Specific Modelling with UML ...28

B.3.3.2. Modelling with MARTE ..28

B.3.3.2.1. Specification of NFP ..29

B.3.3.2.2. MARTE::GQAM framework ...29

B.3.3.3. Modelling with DAM ...30

B.3.3.3.1. DAM Library ..30

B.3.3.3.2. Basic Dependability Types ...30

B.3.3.3.3. Complex Dependability Types ...31

B.3.3.3.4. DAM UML extensions ...31

B.3.3.4. Access Control Modelling with UML..31

B.4. Modelling tools ..32

B.4.1 Analysis ..33

B.4.2 MARTE profile feature (import *.XMI) ..34

B.4.3 UML diagrams supported ..35

Deliverable 1.1. State of the art analysis

Copyright © 2015, DICE consortium – All rights reserved 5

B.4.4 Summary ..35

B.5. Tools for model to model transformations ...36

B.5.1 Palladio Component Model ...37

B.5.2 VIATRA2 ..37

B.5.3 UML transformation tool ...38

B.5.4 Other tools ..39

B.5.4.1. CARiSMA ..39

B.5.4.2. UPUPA (fUML and Profiles for Performance Analysis) ...39

B.5.4.3. QVT and Related Technologies ...39

B.5.5 Summary ..40

B.6. Deployment modelling with TOSCA ..40

B.7. Deployment tools ...41

B.7.1 Overview ..41

B.7.2 Configuration management ..41

B.7.3 Orchestration ..42

B.7.3.1. Ubuntu Juju ..42

B.7.3.2. Cloudify ...42

B.7.3.3. Alien4Cloud ...43

B.7.3.4. Apache Brooklyn ...43

B.7.3.5. Flexiant Cloud Orchestrator ...43

B.7.3.6. Rundeck ...43

B.7.3.7. CAMF ..43

B.7.3.8. CELAR ..43

B.7.3.9. Open-TOSCA ..44

B.7.3.10. Tools analysis ...44

B.7.4 Virtualisation and containers ...45

B.7.5 Summary ..45

B.8. Continuous integration tools ..46

B.8.1 TeamCity ..47

B.8.2 Hudson / Jenkins ..47

B.8.3 Atlassian Bamboo ..47

B.8.4 Go ...47

B.8.5 Strider CD ..47

B.8.6 BuildBot ...48

B.8.7 CircleCI ..48

B.8.8 Summary ..48

B.9. Versioning of software engineering artefacts. ...49

B.9.1 Classical versioning tools ...49

B.9.1.1. CVS ..49

B.9.1.2. Subversion ..49

B.9.1.3. Git ..49

B.9.1.4. Mercurial ..50

B.9.2 DICE needs with respect to versioning ..50

B.10. Discussion ..50

C. QUALITY ASSURANCE ... 52

C.1. Non-Functional Properties in DevOps ...52

C.2. Performance Metrics ..53

C.3. Reliability Metrics ...53

Deliverable 1.1. State of the art analysis

Copyright © 2015, DICE consortium – All rights reserved 6

C.4. Safety Properties ..54

C.5. Quantitative analysis for assessment of performance, reliability and safety56

C.5.1 Combinatorial techniques ..56

C.5.2 State-based techniques ...57

C.5.2.1. Stochastic Petri Nets ..57

C.5.2.2. Queueing networks ..57

C.5.3 Monte Carlo simulation techniques ...58

C.6. Performance and reliability prediction tools ..59

C.6.1 Stochastic Petri Net tools ...59

C.6.2 Queueing Network tools ..60

C.7. Formal analysis of safety and privacy properties ...61

C.8. Tools for Formal Verification ..63

C.9. Software Anti-patterns ...65

C.10. Optimising Deployment Plans ...66

C.11. Testing and Monitoring of Non-Functional Properties ..67

C.11.1 Testing methods ...67

C.11.2 Testing tools ...69

C.11.2.1. Grinder ...69

C.11.2.2. Apache JMeter ...69

C.11.2.3. Selenium ..70

C.11.2.4. MODAClouds MDload ..70

C.11.2.5. Chaos Monkey ...70

C.11.3 Monitoring tools ...71

C.11.3.1. Hadoop toolkit ...71

C.11.3.2. SequenceIQ ..71

C.11.3.3. Hadoop Vaidya ..72

C.11.3.4. Ganglia ...72

C.11.3.5. Apache Ambari ..72

C.11.3.6. Apache Chukwa ...72

C.11.3.7. Datastax-OpsCentre for Apache Cassandra ...73

C.11.3.8. MongoDB (MMS)..73

C.11.3.9. Server Density ..73

C.11.3.10. Manage Engine ..73

C.12. Monitoring Feedback Analysis ..74

C.12.1 Tools for Detecting Anomalies with Machine Learning ..74

C.12.2 Distributed Machine Learning Platforms ...75

C.12.3 Model Parameter Estimation ..78

C.12.4 Trace Checking ..79

D. DATA-INTENSIVE TECHNOLOGIES ... 80

D.1. Overview ..80

D.2. Hadoop and Spark ..80

D.2.1 Overview ..80

D.2.2 Apache Hadoop ..81

D.2.2.1. Overview ..81

D.2.2.2. Hadoop public cloud offerings ...82

D.2.2.3. Hadoop Quality metrics ...83

D.2.2.4. Hadoop meta- and QoS models ...83

D.2.3 Apache Spark ...84

Deliverable 1.1. State of the art analysis

Copyright © 2015, DICE consortium – All rights reserved 7

D.2.3.1. Overview ..84

D.2.3.2. Spark public cloud offerings ..84

D.2.3.3. Spark Quality metrics and models ...84

D.3. Streaming ...85

D.3.1 Introduction ..85

D.3.2 Stream processing architecture ..85

D.3.3 Public cloud offerings ..86

D.3.4 Open source solutions. ...86

D.3.4.1. Apache Storm ...86

D.3.4.2. Apache Spark Streaming ..87

D.3.4.3. Comparison between Storm and Spark ..88

D.3.4.4. Apache Samza ..88

D.3.4.5. Other solutions ...89

D.3.5 Message queues ...90

D.3.6 General characteristics ...90

D.3.6.1. Key monitoring metrics ...90

D.3.6.2. Main quality assurance challenges ...90

D.3.6.3. Reliability ...90

D.3.6.4. Scalability ..91

D.3.6.5. Efficiency ...91

D.3.6.6. Privacy ...91

D.4. NoSQL ...91

D.4.1 High level architecture of a NoSQL database ..92

D.4.2 List of public cloud offerings available for this technology ..92

D.4.3 Open source solutions ..95

D.4.4 Quality Assurance ..96

D.4.4.1. Key monitoring metrics ...96

D.4.4.2. Main quality assurance challenges. ..96

D.4.4.3. Reliability ...96

D.4.4.4. Efficiency ...96

D.4.4.5. Safety ...96

D.4.4.6. Privacy ...96

D.4.5 Models ..97

D.4.5.1. QoS prediction models. ..97

D.5. Software-Defined Networking ...97

D.5.1 Architecture ..97

D.5.2 Quality Assurance in Software Defined Networking ...98

D.5.3 Current Issues ..99

D.5.4 Controllers architecture and low levels APIs ...99

D.5.5 Languages and network policies ..99

D.5.6 SDNs in DICE ..100

D.6. Cloud-based blob storage ...100

D.6.1 Ceph ...100

D.6.1.1. Typical architecture of CEPH ..100

D.6.1.2. Cloud offerings using CEPH ..101

D.6.1.3. Open Source solutions ...101

D.6.1.4. Quality assurance ...101

D.6.1.4.1. Key monitoring metrics ..101

Deliverable 1.1. State of the art analysis

Copyright © 2015, DICE consortium – All rights reserved 8

D.6.1.4.2. Quality assurance challenges for CEPH literature. ..102

D.6.1.4.3. Reliability and high-availability support for CEPH ...102

D.6.1.4.4. Scalability and performance support for CEPH ...102

D.6.1.4.5. Privacy and data protection with CEPH ...102

D.6.2 Amazon Simple Service Storage (Amazon S3) ...102

D.6.2.1. Overview ..102

D.6.2.2. Public cloud offerings of S3 ...103

D.6.2.3. Open source solutions with S3 ...103

D.6.2.4. Quality assurance. ..104

D.6.2.4.1. Key S3 monitoring metrics ...104

D.6.2.4.2. Main quality assurance challenges. ..104

D.6.2.4.3. Configuration options for reliability and high-availability with S3104

D.6.2.4.4. Scalability and performance for S3 ..104

D.6.2.4.5. Privacy and data protection within S3 ..104

D.7. In-Memory Analytics ...104

D.7.1 Introduction ..104

D.7.2 Diagram showing a typical architecture of this technology. ..105

D.7.3 Public cloud offerings available for this technology. ...105

D.7.4 Open source solutions for adoption of this technology in private clouds.105

D.7.5 Quality assurance ...105

D.7.5.1. Key monitoring metrics. ..105

D.7.5.2. Main quality assurance challenges. ..105

D.7.5.3. Reliability ...105

D.7.5.4. Efficiency ...105

D.7.5.5. Privacy ...106

D.7.6 Models ..106

D.7.6.1. Meta-models. ...106

D.7.6.2. Quality of Service prediction models. ..106

CONCLUSION .. 107

REFERENCES... 108

Deliverable 1.1. State of the art analysis

Copyright © 2015, DICE consortium – All rights reserved 9

List of figures

Figure 1. Lambda Architecture. ...16

Figure 2. Architecture of Oryx 1 [32]. ...18

Figure 3. Architecture of Oryx 2 [31]. ...19

Figure 4. Kappa Architecture. ..20

Figure 5. Liquid Architecture [38]. ..20

Figure 6. DevOps key values [42]. ..22

Figure 7. An Overview of the Activities and Tools behind DevOps. ..23

Figure 8. Typical Organisational Structures behind DevOps, an example [42]. ...23

Figure 9. Sketch of UML Profile definition. ..28

Figure 10. DAM profile overview. ..30

Figure 11. DAM types. ..31

Figure 12. Main TOSCA concepts and their relations [164]. ..40

Figure 13. DICE high level vision [237]. ...51

Figure 14. SequenceIQ high-level architecture [363]. ...71

Figure 15. Architecture of a typical streaming processing solution [500]. ..85

Figure 16. Typical Storm architecture [508]. ...87

Figure 17. Typical Spark architecture [508]. ...87

Figure 18. Typical Samza architecture [508]. ..89

Figure 19. Architecture of a distributed NoSQL. This Figure refers to the HBASE architecture.92

Figure 20. Ceph integration example [589]. ..101

List of tables

Table 1: Examples of Big Data impact across various sectors. ...13

Table 2: Machine learning algorithms used in Oryx 1 and Oryx 2. ...19

Table 3: UML CASE Tools summary. ..34

Table 4: CASE tools. ...34

Table 5: UML 2.0 Diagrams supported by modelling tools. ..35

Table 6: Summary of the evaluation framework for model-to-model transformation tools [153].36

Table 7: Evaluation framework from Table 6 applied to Palladio Component Model.37

Table 8: Evaluation framework from Table 6 applied to VIATRA2 framework. ...38

Table 9: Evaluation framework from Table 6 applied to UML transformation tool.38

Table 10: Comparative summary of deployment orchestration tools. ...44

Table 11: Comparative summary of continuous integration tools. ..48

Table 12: Comparison of SPN tools. ...59

Table 13: Comparison of Queueing Network tools. ..60

Table 14: Formal verification tools. ...64

Table 15: State of the art in the area of software performance anti-patterns detection.66

Table 16: Comparative summary of testing tools. ...70

Table 17: Comparative summary of monitoring tools. ..73

Table 18: Machine Learning tools. ..75

Table 19: Distributed ML frameworks. ...77

Table 20: State of the art in the area of feedback analysis tools. ...78

Table 21: Public and commercial cloud offerings for stream processing. ...86

Table 22: Storm vs Spark comparison. ..88

Deliverable 1.1. State of the art analysis

Copyright © 2015, DICE consortium – All rights reserved 10

Table 23: Comparison of streaming processing frameworks [508], [518]-[520]. ...90

Table 24: Public cloud offerings for NoSQL (Database as a Service). ...93

Table 25: Open source solutions for NoSQL. ..95

Table 26: Open source SDN solutions supporting OpenFlow. ..98

Table 27: Dreamhost pricing storage [591]. ..101

Table 28: AWS Storage Pricing US Standard [597]. ...103

Table 29: Data Transfer Pricing US Standard [597]. ...103

Deliverable 1.1. State of the art analysis

Copyright © 2015, DICE consortium – All rights reserved 15

The use of NoSQL solutions in the context of Big Data is preponderant and, in many respects, it made Big

Data possible; nonetheless, it is necessary to warn the reader from falling into the easy association ‘NoSQL

= Big Data’ because recent years have witnessed the appearance of highly scalable storage systems based

on the relational model.

Moreover, due to the size of datasets and the need for parallelism in the computation, high performing file

systems such as Hadoop Distributed File System (HDFS, see section D.2) have been developed. The main

characteristics of these file systems are to be 1) distributed, i.e. files and dataset are seamlessly distributed

over several nodes. In this way different nodes can access and analyse data at the same time on the same

dataset; 2) multi-structured, meaning that a variety of data types are supported. Usually, the information is

stored at block level; 3) replicated, files and blocks are replicated several times for reliability/recovery and

to enhance data locality.

A.4.3 Streams and Big Data in motion

In the previous paragraphs, we tried to outline Big Data problems and approaches leaving aside the much

of the discussion on the latency in data management. We introduced distributed storage solutions and the

reader might presume that the only way to deal with Big Data is to collect them into huge datasets (data at

rest) and analyse them ‘a posteriori’, periodically or as a response to an event. This is not always the case,

though. Data can enter the system from different sources and examined in (almost) real-time (data in

motion). In this scenario, the data flows are referred to as data streams and they are mainly characterised

by velocity and variability. Many solutions for data streaming were devised used long before the concept of

Big Data came up. Nevertheless, the parallelisation, resource management and reliability supplied by

modern Big Data framework imposed a reconsideration and redefinition of many basic elements in data

streaming. As evidence of this, in the last couple of years we have witnessed the successful application of

concepts typically used for data at rest (Maps, Reduces, direct acyclic graphs (DAGs), Batches) to data in

motion scenarios. Spark is an example of framework aiming at unifying both scenarios under the same

programming paradigm (see Chapter D).

A.5. Architectural Styles for DIAs
The particular focus of DIA on Big Data makes them fairly different from traditional enterprise application.

Therefore, the research and technical community have investigated in recent years novel architectural styles

to support DIAs. In particular, the data velocity of Big Data applications is application-specific and may

range from a few to millions of data items per second. Different Big Data applications enforce different

quality of service constraints regarding response time. For example, a reactive use case with high-volume

data streams may require an answer in a real-time (milliseconds) fashion.

A.5.1 Lambda Architecture

The Lambda Architecture introduced by Marz [16] is an advanced architectural style to overcome the

challenges in general for Big Data applications and more specifically on real-time stream processing. The

architectural style decomposes the problem into three key layers: (i) the batch layer focuses on fault

tolerance and optimises for precise results (ii) the speed layer is optimised for real-time response-times and

only consider the most recent data and (iii) the serving layer provides low latency views to the results of

the batch layer. Note that some other layers will be introduced later for coordination and orchestration

purposes.

Lambda Architecture enables real-time responses to query over Petabytes of data. Such a query on

traditional architectures imposes unreasonably high latency. The Lambda Architecture divides this problem

into three layers. The batch layer pre-computes the query function based on the full data set and updates the

serving layer. This operation involves high latency and by the time the view of the pre-computed query is

Deliverable 1.1. State of the art analysis

Copyright © 2015, DICE consortium – All rights reserved 18

MapReduce [29]. Amazon provides the necessary tools to build a batch and speed layer, but the integration

of both layers and its challenges are not offered as a holistic solution yet. Lambdoop [30] is an industry

implementation framework that facilitates application development based on Lambda Architecture.

A.5.1.7. Oryx: an example Lambda Architecture
Throughout the DICE project, we will use Oryx [31] as a reference technology to illustrate the applicability

of some of our technical results to Big Data applications.

Oryx is an open source framework for building Big Data applications, but also includes ready to be

deployed out-of-the-box example application, which can be used as it is or as a basis for developing a

custom application. The intended application of Oryx framework is predictive analytics in real time based

on the construction of models from the incoming streaming data. The models used in analysis are built

using Machine Learning (ML) algorithms. The target areas for the application - among others - are

business, health, education and weather forecasts. The design of Oryx is based on the Lambda Architecture.

The first version of Oryx (Oryx 1) [32] was released in 2013. Its architecture consisted of two layers:

Computation Layer - where models based on incoming streaming data were built and evaluated based on

the requests from a client, and Serving Layer - a medium for accepting requests from a client, transferring

them to the Computation Layer for evaluation and returning result to the client. The Computation Layer

runs both Batch process, which is an ‘offline’ process, meaning that it does not operate in real time, rather -

several times a day, and model update and evaluation process, which is quick (process time measured in

seconds). All parameters are controlled via configuration files. The high-level architecture of Oryx 1 is

presented in the Figure 2.

Figure 2. Architecture of Oryx 1 [32].

The high-level architecture of Oryx 2 is presented in the Figure 3.

Deliverable 1.1. State of the art analysis

Copyright © 2015, DICE consortium – All rights reserved 19

Figure 3. Architecture of Oryx 2 [31].

Both Oryx 1 and Oryx 2 employ machine learning algorithms to construct prediction models. Brief

description of these algorithms is given in the Table 2.

Table 2: Machine learning algorithms used in Oryx 1 and Oryx 2.

Collaborative

filtering

A technique used by recommender systems (engines) to suggest various items such as

movies, music, news, books, research articles, search queries and so on to the client.

Collaborative filtering implemented in Oryx uses matrix factorisation-based approach based

on a variant of Alternating Least Squares (ALS) [34].

Classification

and Regression

Classification can be used, for example, to separate e-mails into ‘spam’ and ‘non-spam’.

Regression is used to predict a specific numeric value (e.g. temperature on a given day or

salary in certain year). Oryx employs random decision forests algorithms to solve

classification and regression problems. Classification and regression belong to the supervised

learning category of ML algorithms, which means that they require some initial data sets to

be ‘trained on’.

Clustering Clustering is similar to classification in the sense that an object is assigned to a specific

category (group, class), but clustering is an unsupervised learning method. It does not require

an initial set to create classes to which subsequent incoming data is then compared, but rather

tries to create groups (classes) from incoming data by looking for some common features in

it. Oryx implements scalable k-means++ [35] for clustering.

A.5.2 Other Architectures

Although the Lambda Architecture has gained consensus in recent years, it has some limitations. First,

maintaining code that needs to produce the same result in two complex distributed systems is expensive.

Programming in distributed frameworks like Storm [19] and Hadoop [14] is complex. One proposed

approach to fixing this is to have a language or framework that abstracts over both the real-time and batch

framework. The developer writes code using this higher level framework and then it is translated into low-

level stream processing and/or MapReduce code. However, this entails the operational burden of running

and debugging two systems which is going to be very high.

Deliverable 1.1. State of the art analysis

Copyright © 2015, DICE consortium – All rights reserved 20

Therefore, alternative architectures have been proposed. For example, the Kappa Architecture has been

proposed by LinkedIn [36] exploiting stream processing, that is:

1. Use messaging system like Kafka [21] that will let you retain the full history of the data you want

to be able to reprocess.

2. When one wants to do the reprocessing, start a second instance of the job that starts processing

from the beginning of the data, but put this output data to a new table.

3. When the second job has been finished, switch the query to read from the new table.

4. Stop the old version of the job, and delete the old output table.

This new architectural style of the Kappa Architecture is depicted in Figure 4.

Figure 4. Kappa Architecture.

Another recent proposal is the Liquid Architecture [37], which has two layers: a messaging layer based on

Apache Kafka [21], and a processing layer based on Apache Samza. The processing layer (i) executes jobs

for different back-end systems according to a stateful stream processing model; (ii) guarantees service

levels through resource isolation; (iii) provides low latency results; and (iv) enables incremental data

processing. A messaging layer ports the processing layer. Figure 5 shows architectural style of the Liquid

Architecture.

Figure 5. Liquid Architecture [38].

Deliverable 1.1. State of the art analysis

Copyright © 2015, DICE consortium – All rights reserved 23

Figure 7. An Overview of the Activities and Tools behind DevOps.

Finally, the organisational integration to be enforced within DevOps typically uses simple combined teams

(e.g., dev + ops) or follows other more strict organisational patterns typical in DevOps success stories,

many of which are currently under investigation in the Software Engineering Institute [52] to assess their

operational effectiveness. For example, Figure 8 shows an example of organisations structure typical in

organisations that embrace DevOps. More in particular, Figure 8 shows a balanced blend between Dev- and

Ops- people across a product portfolio.

Figure 8. Typical Organisational Structures behind DevOps, an example [42].

In summary, DevOps is a movement that helps to bridge the cultural gap between development and

operations [53]. Its goal is to enable each department to be aware of the perspective of the other and push

them to change the dynamics in which they interact [54].

DevOps provides patterns to foster collaboration among project stakeholders and addresses shared goals

and incentives as well as shared processes and tools [55]. Therefore, the concept of ‘sharing’ is at the very

core of DevOps: sharing ideas, goals, issues, processes and tools. In addition, DevOps incites Devs and

Ops teams to share their skills and experiences with each others, which leads to a one team approach where

individuals have at least a basic understanding of others domains [55].

DevOps tries to extend Agile practices to operations by eliminating the wall between development and

operations and to address the structural conflict between them: both teams work together to deliver

application changes to the user at a high frequency and quality.

Deliverable 1.1. State of the art analysis

Copyright © 2015, DICE consortium – All rights reserved 24

Although improving communication between developers and operations teams contributes to solve critical

issues, it is only a portion of the wider equation; integrating the right tools is important for DevOps. Major

parts of the releasing process should be automated along the delivery process in order to facilitate

collaborative change [54].

Automation has many benefits: it ensures that the software is built the same way each time and makes parts

of the process transparent for the whole team; thus software deployment to different target environments is

made in the same manner [55].

Automation includes many steps (preparing the build, checking quality of code, launching build, running

all tests, packaging, deploying and staging the artefacts) and necessitates scripts (for building, testing,

deploying, configuring application, and configuring infrastructure). In his book, Michael Hüttermann

explores concrete patterns for automatic releasing with appropriate tools [55] (Chapters 8 and 9).

By combining different approaches of DevOps and applying well-known DevOps practices, IT

performance is strongly improved, which contribute to organisational performance as described by

PuppetLabs report [56].

In the scope of DICE, DevOps methodologies and tools represent a set of reference materials as well as a

potential target for further integrated support.

On the one hand, DevOps methodologies and tools need to be taken into account as organisational and

technical concerns which are the key to enabling continuous delivery of Data-Intensive Applications

(DIAs) by design and which govern the feedback loop between runtime and design time that is intrinsic to

the DICE approach.

On the other hand, DevOps and connected tools/methods are themselves predicating on the usage of DIAs

to further the understanding of the application lifecycle for further improvement and increased

organisational/technical agility. In this regard, DICE may be a valuable tool to study where DIAs may play

a role in finding valuable business intelligence to speed up application development and deployment.

Moreover, testing within the DICE project should make massive and careful reference to DevOps methods

and tools in order to establish guidelines and test-cases according to which DIAs may be designed and

tested for ‘DevOps-Readiness’. This may include studying the best-fit organisational and socio-technical

patterns of integration between DIAs and typical DevOps toolchains.

In addition, this may also entail studying empirically in which circumstances the DICE model-driven

assumptions fail to meet DevOps expectations (e.g. continuous integration). Finally, from a methodological

point of view, DIAs’ specification and monitoring should take into account DevOps dynamics and tools to

enable DIAs monitoring in sight of their continuous improvement.

B.3. Functional modelling

B.3.1 Overview

From a functional perspective focused around modelling, the DICE approach to define, specify and analyse

DIAs may inherit results from a number of technological baselines. In particular, we see the following

baselines as relevant to the DICE project: (1) the ‘Model-Driven Architecture’ (MDA) standard [57], i.e.,

the Object Management Group (OMG) [58] standard for Model-Driven Engineering (MDE) [59], (2) the

MODAClouds EU project [60] and related key results (e.g. MODACloudML [61]); (3) the REMICS EU

project [62] and key results therein (e.g. Model-Driven cloud-migration techniques); (4) the Artist EU

project [63] and key results therein that share a similar purpose to REMICS; (5) the JUNIPER EU project

Deliverable 1.1. State of the art analysis

Copyright © 2015, DICE consortium – All rights reserved 25

[64] and key results therein share DICE goals and aims at an even lower level of abstraction; (6) in

general, Unified Modelling Language (UML) and its profiles called MARTE (Modelling and Analysis of

Real-Time and Embedded systems) and DAM (profile for Dependability Analysis and Modelling) (see

Section B.3.3). These last ones are of particular interest to DICE as they allow users to model performance

and other quality characteristics of applications. The rest of this section elaborates said technologies in

more detail, with a hint as to their possible role in DICE.

B.3.2 MDE and domain-specific model-driven approaches

MDE techniques [59] and MDA in particular [57] define the typical abstraction layers for the purpose of

engineering software systems using a model-centric perspective. The fundamental axiom behind this

engineering paradigm is that any engineering endeavour shall be guided by at least three compounding and

interoperating perspectives, namely: (c) Computational-Independent perspective; (b) a Platform-

Independent perspective; (c) a Platform-Specific perspective. Using these three perspectives, one or more

models can be specified to properly and systematically specify a system-to-be.

1. At the Computational-independent level, business-critical details are defined as such that intended

business scenarios and systems goals may become apparent and explicit. Typically this perspective

is consistent with requirements engineering activities such as stakeholder identification and

scenario analysis.

2. At the Platform-independent level, architectural, quality and design issues are specified using one

or more Architecture Viewpoints. The specification at this level typically uses model

transformation technologies to support consistency and analysis across multiple Views and

Viewpoints.

3. At the Platform-Specific level, design decisions are realised into well-formed designs, e.g.,

reflecting appropriate selection of design patterns, usable technological platforms and middleware

(e.g. CORBA [65]).

Within DICE, MDE and MDA play a key role in providing a fundamental specification baseline. More

specifically, the DICE profile inherits the MDA separation of concerns and logical decomposition, as well

as a model-centric approach featuring multiple model transformations both for model consistency (and

eventually technological deployment) and model analysis.

MDE and MDA have been adopted and specialised for various domains in many research projects. Among

the others, MODACloudML [61] provides a Domain-Specific Modelling Language (DSML) along with a

runtime environment in order to allow, on the one hand, to model the provisioning and deployment of

multi-cloud applications, and on the other to automate the deployment and to facilitate their runtime

management (in terms of adaptation or reconfiguration actions).

In this way MODACloudsML supports DevOps in achieving better delivery life-cycle by integrating in a

single framework both development and operation activities.

MODACloudML supports both the Infrastructure as a Service (IaaS) and the Platform as a Service (PaaS)

levels, even if it mainly focuses on the former. From the modelling perspective, MODACloudML allows

the application specification at three levels of abstraction, which aim at following the general MDA

paradigm: the Cloud-enabled Computation Independent Model (CCIM) to model an application and its data

from a high-level business perspective, (ii) the Cloud-Provider Independent Model (CPIM) to characterise

cloud concerns related to the application in a cloud-agnostic way, and (iii) the Cloud-Provider Specific

Model (CPSM) to model the deployment and provisioning activities on a specific cloud.

Deliverable 1.1. State of the art analysis

Copyright © 2015, DICE consortium – All rights reserved 26

At the CCIM level, an application is described as a set of high level services following a Service Oriented

Architecture. At this level of abstraction these models involve three main concepts: a set of services, an

orchestration, and a set of usage models. At the CPIM level MODACloudML proposes a new approach to

describe the deployment, provisioning and data models of multi-cloud systems in a provider-agnostic way,

supporting both IaaS and PaaS solutions. At the CPSM level, the design alternatives and deployment

models as well as the data models are refined to include provider-specific concerns and technologies.

MODACloudML is also inspired by component-based approaches, which facilitates separation of concerns

and reusability. In this respect, deployment models can be regarded as assemblies of components exposing

ports and bindings between these ports. In addition, MODACloudML implements the type-instance pattern,

which also facilitates reusability and abstraction.

Even if it is not specifically focused on DIAs, MODACloudML can become one of the foundational

approaches behind the definition and further elaboration of the DICE profile for at least three reasons:

1. MODACloudML follows already the logical decomposition and model-driven engineering

abstraction behind typical MDE-inspired techniques, e.g., with the division and arrangement in

three tiers of modelling and analysis.

2. MODACloudML sets to describe Cloud-based applications - it is in fact a fundamental assumption

behind DIAs that their very nature resides in the cloud. Hence, MODACloudML is a reasonable

technology upon which to draw inspiration both in terms of modelling/deployment and analysis.

3. The MODAClouds project already provides infrastructure and usable technologies/tools for the

specification, analysis and deployment of MODACloudML models, e.g., allowing the DICE profile

to be quickly developed in prototypical form and further refined by means of MODAClouds-based

technology.

Other EU projects that could offer a fundamental inspiration for DICE are REMICS [62] and Artist [63].

 They look at ways in which model-driven techniques can be used to: (a) accelerate the adoption of cloud-

based technology, possibly migrating legacy assets; (b) use models to drive the continuous improvement of

cloud-intensive applications such as DIAs; (c) use model-centric perspectives to evaluate cloud assets and

compare multiple cloud-vendors to compute solutions best-fitting with Service-Level Agreements (SLAs)

and stakeholder/customer concerns. Quoting from REMICS website [62], the project’s purpose is to

provide a model driven methodology and tools which significantly improve the baseline Architecture-

Driven Modernisation (ADM) [66] concept. In a similar vein, DICE could work jointly with efforts

inherited from REMICS by specifying constructs, modelling and methodological notations to enable the

systematic migration of legacy Big Data analytics into well-formed and quality-aware DIAs, enabled for

continuous evolution.

Finally, the JUNIPER EU project [64] intends to construct the platform from real-time technologies, using

real-time analysis, design and development principles, so that appropriate guarantees can then be given

with respect to Big Data processing times, performance and similar quality attributes. In its current version,

JUNIPER offers a programming model and a series of APIs to speed up the development of performance-

aware Big Data applications.

On one hand, the JUNIPER programming model aims to conceptualise the development process of data-

centric applications in a way that is general enough to cope with every need (in scope of the JUNIPER

scenarios) but also allows common data processing patterns to be abstracted, modelled, and optimally

deployed. The programming model proposed in JUNIPER is not a replacement of any of existing parallel

processing frameworks and programming models, such as Hadoop/MapReduce [14], Message-Passing

Deliverable 1.1. State of the art analysis

Copyright © 2015, DICE consortium – All rights reserved 28

However, neither MARTE nor DAM has a direct support for expressing data location, data properties such

as volume or transfer rates or operations that move data. Hence, addressing such lack is one of the

objectives of the DICE project.

B.3.3.1. Domain-Specific Modelling with UML
UML offers different diagrams for the modelling of the structural, behavioural and distribution views of a

system. For example, the object diagram and the class diagram describe the structure of a system. The state

machine diagram, interaction diagrams, activity diagram and use cases are used for the modelling of the

system dynamic and behaviour. The component and deployment diagrams describe system distribution. A

UML diagram is made of elements, for example, a class diagram is made of classes and relationships

among them, such as associations, inheritance or dependencies. The UML package diagram is useful for

organising UML diagrams and/or UML elements. The UML model of a system is made of a set of UML

diagrams. A UML model has to conform to the UML meta-model. A meta-model is a set of related meta-

classes. A meta-class is the abstraction of a set of UML elements. For example, in a UML class diagram,

each association belongs to the Relationship meta-class of UML since associations share characteristics

with other relationships. This meta-model feature is an interesting characteristic of UML since the profiling

mechanism builds on it. The UML Profiles package contains mechanisms that allow meta-classes from

existing meta-models to be extended to adapt them for different purposes. This includes the ability to tailor

the UML meta-model for different platforms (such as J2EE [70] or .NET [71]) or domains (such as real-

time, business process modelling or DIA). A UML Profile is made of a set of stereotypes, a set of tags and

a set of related constraints. A stereotype is just a name that will be attached to certain elements of a UML

diagram. Stereotypes have tags, we can see them as the attributes added by the stereotype. A constraint can

be attached to a stereotype definition. It is expressed in natural language or in the Object Constraint

Language (OCL) [72] and describes restrictions for the stereotype, e.g. for expressing subsets of values for

the stereotype. Figure 9 goes deeper into the Profile definition. A Profile is a specialisation of the UML

concept of Package, which means that a Profile is a set of modelling elements, in fact the stereotypes, tags

and constraints.

Figure 9. Sketch of UML Profile definition.

Therefore, stereotypes are the cornerstone concept in a Profile. At model-specification level stereotypes are

applied to concrete UML elements, which is possible since they extend concrete meta-classes of UML, as

we can see in Figure 9.

B.3.3.2. Modelling with MARTE
The MARTE profile consists of three main parts: MARTE Foundations, MARTE Design Model and

MARTE Analysis Model.

First, the MARTE Foundations define the basic behaviour concepts for the Real-Time and Embedded

Systems (RTES) domain, such as a causality model, a common framework for annotating models with

quantitative and qualitative Non-Functional Properties (NFP, say performance, reliability and safety), the

modelling of time, the modelling of resources and their allocation concerns.

Deliverable 1.1. State of the art analysis

Copyright © 2015, DICE consortium – All rights reserved 31

o statQ: The type of statistical measure (e.g., maximum, minimum, mean).

o dir: The type of the quality order relation in the allowed value domain of the NFP, for

comparative analysis purposes.

B.3.3.3.3. Complex Dependability Types

Complex dependability types are MARTE tupleTypes characterised by basic NFPs, from the MARTE

library, and/or basic dependability types. They enable to characterise both from a qualitative and a

quantitative point of views, the threats (i.e., faults, errors, failures and hazards) and the mitigation solutions

(i.e., recovery and repair strategies). As for stereotypes, a complex dependability type for DAM is prefixed

by ‘Da’. Figure 11 depicts these types.

Figure 11. DAM types.

B.3.3.3.4. DAM UML extensions

The DAM extensions provide the domain expert with a set of stereotypes to be applied at model

specification level, i.e., the stereotypes necessary to represent the dependability system view in a concrete

UML model. DAM aims at providing a small yet sufficient set of stereotypes to be actually used in

practical modelling situations. The DAM stereotypes are: DaComponent, DaConnector, DaService,

DaServiceRequest, DaStep, DaErrorPropRelation, DaFaultGenerator, DaReplacementStep,

DaReallocationStep, DaActivationStep, DaAgentGroup, DaController, DaVariant, DaAdjudicator,

DaSpare and DaRedundantStructure. For a complete description of the tags for each DAM stereotyped

refer to [75].

B.3.3.4. Access Control Modelling with UML
Over the years a number of UML profiles have been defined to represent security-related properties of

systems. Since the focus of the DICE project for what concerns issues of data protection and privacy rests

on problems related to giving access to data and information only to components that have the appropriate

rights for that. In this brief section we analyse several approaches for the modelling of access rights through

http://modeling-languages.com/uml-tools/
http://software-talk.org/blog/2014/05/comparison-of-free-uml-tools/

Deliverable 1.1. State of the art analysis

Copyright © 2015, DICE consortium – All rights reserved 33

released under the GPLv3 (a viral license which is not suitable for DICE), although there is a commercial

version too. Modelio allows the import/export of UML models from/to other tools via UML XMI format.

Modelio enables the use of the MARTE profile [96].

MOdeling Software KIT (MOSKitt) [97] is a free CASE tool, built on Eclipse which is being developed

by the Valencian Regional Ministry of Infrastructure and Transport, namely through technology provider

Prodevelop, to support the gvMétrica methodology (adapting Métrica III to its specific needs). It supports

UML2, BPMN [95] standards and database diagrams. MOSKitt is released under EPL [84]. MOSKitt gives

a framework to build Model-to-Model (M2M) transformations based on Eclipse standards, as well as

import capabilities for external UML XMI [81] format models.

ArgoUML [98] is an open source and free UML modelling tool distributed under the EPL 1.0 [84].

ArgoUML is a Java-based application that is available in ten languages. ArgoUML also provides code

generation for Java [99], C++ [100], C# [101], PHP4 and PHP5 [102]. It also enables reverse engineering

from Java. External modules have been developed to complement ArgoUML in specific areas. They

provide generation of database schemas or code in other languages like Ruby [103] or Delphi [104].

However, ArgoUML offers support only for UML 1.4 diagrams, which is not enough for DICE.

StarUML [105], [106] is a UML tool licensed under a modified version of GNU General Public License

(GPL) [107] until 2014. A rewritten version (StarUML 2) was released in 2015 under a proprietary license.

StarUML 2 is compatible with UML 2.x standard and supports totally 11 kinds of UML diagrams: Class,

Object, Use Case, Component, Deployment, Composite Structure, Sequence, Communication, Statechart,

Activity and Profile Diagram. StarUML 2 stores models in a very simple JSON format.

UML Designer by Obeo [108] supports UML 2.5 models. It uses the standard UML2 meta-model

provided by the Eclipse Foundation [109]. Obeo is a free tool (Open Source with EPL license [84]) for

prototypes and starter projects but it is necessary to pay a fee for Small/Medium/Large or critical projects.

UML Designer is based on Sirius [110]. It provides an easy way to combine UML with domain specific

modelling. UML Designer includes a MARTE Designer too (Beta release) [111] which is a graphical tool

to edit and visualise MARTE models.

MagicDraw [112] is a commercial UML modelling tool with a free educational edition. It’s written in

Java, supports UML2 [109], SysML [113], BPMN [95] and UPDM [114]. It provides MDA and code

engineering mechanism (support for J2EE [70], C# [101], C++ [100], CORBA IDL programming

languages [65], .NET [71], XML Schema [115], WSDL [116]), as well as database schema modelling,

DDL generation and reverse engineering facilities. It supports large projects and is used at Netfective

Technology as the modelling component of the BluAge product [117].

IBM® Rational® Software Architect [118] is a comprehensive design, modelling and development tool

for end-to-end software delivery. It uses the Unified Modelling Language (UML) for designing enterprise

Java® applications and web services. Rational Software Architect is built on the Eclipse open source

software framework and is extensible with a variety of Eclipse plug-ins. You can also enhance functionality

for your specific requirements with separately purchased Rational extensions.

B.4.1 Analysis

Table 3 provides summary of the tools reviewed in this section.

Deliverable 1.1. State of the art analysis

Copyright © 2015, DICE consortium – All rights reserved 34

Table 3: UML CASE Tools summary.

Name Creator Platform/OS
Open

source

Software

license

Programming

language used

Enterprise Architect [82] Sparx Systems [119]

Windows (Supports

Linux & Mac

installation)

No Commercial C++ [100]

Papyrus [83] CEA [120], Atos [121]
Windows, Linux

(Java)
Yes EPL [84] Java [99]

Modelio [93] Modeliosoft [94]
Windows, Linux,

Mac
Yes

GPL and

Commercial
Java

MOSKitt [97]

Conselleria de

Infraestructuras, Territorio

y Medio Ambiente [122]

Windows, Linux

(Java), Mac
Yes EPL Java

ArgoUML [98] Tigris.org [123]
Cross-platform

(Java)
Yes EPL Java

UML designer [108]
Obeo Model Driven

Company [124]

Windows, Linux,

Macs
Yes EPL Java

MagicDraw [112] No Magic, Inc. [125]
Windows, Linux,

Mac
No Commercial Java

Rational Software Architect

[118]
IBM [126]

Windows, Linux,

Mac
No Commercial Java

B.4.2 MARTE profile feature (import *.XMI)

As MARTE [68] is the most well-known UML profile for expressing quality characteristics of software

systems, we analyse the tools with respect to their capability of supporting such profile.

MARTE has been defined via a UML2 profile. Thus, UML tools able to support MARTE have to import at

least XMI with version of UML2. Currently, three open source tools are available for system modelling

using the MARTE profile: Modelio [93], Papyrus UML [83] and MARTE Designer (Obeo, but it is still in

Beta Status) [111]. ArgoUML [98] cannot import UML2, therefore it cannot support the MARTE Profile.

Table 4 provides an overview of all tools (open source and commercial) and of their level of support for

MARTE.

Table 4: CASE tools.

Name UML2
MDA

[57]

XMI

[81]
Templates Languages generated

Can be

integrated

with

MARTE

[68]

User

Manual

Forum

community
(30/03/2015)

Enterprise

Architect

[82]

Yes Yes Yes

Supports

MDA

templates

and Code

Generation

templates

ActionScript [127], C,

C# [101], C++ [100],

Delphi [104], Java, PHP

[102], Python [128],

Visual Basic [129],

Visual Basic .NET

[130], DDL [131], EJB,

XML Schema [115],

Ada [132], VHDL

[133], Verilog [134],

WSDL [116], BPEL

[135], Corba IDL [65]

Eclipse &

Visual

Studio [136]

Yes
5 / 5

[139]

Post: 108641

Topics:

28604
Users:
153438

[146]

Modelio

[93]
Yes Yes Yes Yes

Java, C++, C#, XSD,

WSDL, SQL

Eclipse,

EMF
Yes

4 / 5

[140]

Post: 2966

Topics: 639

Users: 968

[147]

Papyrus

[83]
Yes Unknown Yes Unknown

Ada 2005, C/C++, Java

add ins
Eclipse Yes

2 / 5

[141]

(Eclipse

Forum)

MOSKitt

[97]
Yes Yes Yes

M2M and

M2T

generation

HTML, CSS, Java Eclipse No [142] [148]

ArgoUML

[98]
No Yes Yes Unknown

C++, C#, Java, PHP4,

PHP5, Ruby [103]

AndroMDA

[137]
No

3 / 5

[143]

Post: 1457

Topics: 453

Users: 254

[149]

Deliverable 1.1. State of the art analysis

Copyright © 2015, DICE consortium – All rights reserved 35

UML

Designer

[108]

Yes Yes No Yes Java Eclipse No
2 / 5

[144]

Users: 977

[150]

MagicDraw

[112]
Yes Yes Yes Yes

Java, C++, C#, CIL,

CORBA IDL, DDL,

EJB, XML Schema,

WSDL

Eclipse

EMF,

NetBeans

[138]

Yes
3/5

[145]

Post: 9558

Topics: 3099

Users: 1295

[151]

Rational

Software

Architect

[118]

Yes Yes Yes Yes Java Eclipse No - -

B.4.3 UML diagrams supported

Even though UML 2.0 has been standardised long ago, not all tools support all its diagrams. Table 5 shows

the diagrams that are supported by each tool.

Table 5: UML 2.0 Diagrams supported by modelling tools.

EA [82]

Papyrus

[83]

Modelio

[93]

MOSKitt

[97]

UML

 Designer

[108]

ArgoUML

[98]

MagicDra

w [112]
RSA [118]

Structural UML diagrams

Class diagram Yes Yes Yes Yes Yes Yes Yes Yes

Component diagram Yes Yes Yes No Yes Yes Yes Yes

Composite structure

diagram
Yes Yes Yes No Yes Yes Yes Yes

Deployment diagram Yes Yes Yes No Yes Yes Yes Yes

Object diagram Yes Yes Yes No Yes Yes Yes Yes

Package diagram Yes Yes Yes No Yes Yes Yes Yes

Profile diagram Yes Yes

Yes Yes Yes Yes Yes

Behavioral UML diagrams

Activity diagram Yes Yes Yes Yes Yes Yes Yes Yes

Communication diagram Yes Yes Yes No No Yes Yes Yes

Interaction overview

diagram
Yes Yes Yes No No Yes Yes Yes

Sequence diagram Yes Yes Yes Yes Yes Yes Yes Yes

State diagram Yes Yes Yes Yes Yes Yes Yes Yes

Timing diagram Yes Yes No No No

Yes Yes

Use case diagram Yes Yes Yes Yes Yes Yes Yes Yes

Other diagrams

BPMN [95] diagram Yes Yes Yes Yes No No Yes Yes

SysML [113] diagram Yes Yes Yes No Yes No Yes Yes

Database diagram

Yes No No Yes

B.4.4 Summary

In summary the tools that appear to be suitable to be used in the DICE context are Modelio [93] and

Papyrus [83] since they have the appropriate licenses and support the UML Profile mechanism. However,

the Modelio plug-in for MARTE is not supported anymore and it does not work with the last version of

Modelio designer.

The last version of Papyrus (1.1) was released in June 2015 with Eclipse Mars [152]. This version brings

new features and improvements but also tackles some known issues related to performance and user-

friendliness. In particular, in a well-filled containment tree, especially a developed tree, the graphical user

interface works smoothly as long as the size of the model does not becomes excessively large, i.e., more

than 2000 visible nodes.

Deliverable 1.1. State of the art analysis

Copyright © 2015, DICE consortium – All rights reserved 36

B.5. Tools for model to model transformations
The purpose of this section is to evaluate tools that transform software models, described using non-formal

or semi-formal languages, into formal models. The goal of the target formal model is to perform analyses

of the non-functional properties of the software system, such as performance, reliability, availability, safety

or privacy. To this end, we have reused the evaluation framework proposed by [153]. This work also

reviewed some tools. Here we have added to the original evaluation some new tools that are of interest to

DICE. The evaluation framework proposed in [153] is summarized in the Table 6:

Table 6: Summary of the evaluation framework for model-to-model transformation tools [153].

Characteristic Description/question

1 model specification Does the tool support specification of systems as graphical models? {Yes/No}

2 graphical notation for

model transformation

Does the tool support graphical specification of transformation? {Yes/No}

3 lexical notation for model

transformation
Does the tool support lexical specification of transformation? {Yes/No}

4 model-to-model

transformation support

Does the tool support model-to-model transformation? (e.g., from one UML model to

another?) {Yes/No}

5 model-to-text

transformation support

Does the tool support model-to-text transformation, such as generation of source code?

{Yes/No}

6 support for model analysis Is there any support for model analysis? {Yes/No}

7 support for Quality of

Service (QoS)

management

Is there any support for managing QoS during model specification and transformation?

{Yes/No}

8 meta-model-based Is the tool based on explicit descriptions of the meta-models of source and target

model? {Yes/No}

9 MOF
1
 integration Is the tool integrated with a MOF

1
 (or other meta-model-based repository)? {Yes/No}

10 XMI integration Is the tool integrated with XMI
1
? {Yes/No} which version(s) of XMI is supported?

{list of versions}

11 based on UML Is the tool based on UML models as source and/or target models for transformation?

 {Yes/No}

12 UML specification Does the tool provide support for UML modelling {Yes/No}

13 UML tool integration Can the tool be integrated with existing UML tools? Either directly, as active plug-ins

in UML tools, or indirectly through model exchange via, e.g., XMI? {Yes/No}or{names

of the set of techniques}

14 iterative and incremental

transformation support

Does the tool handle reapplication of transformation after model updates? {Yes/No}

15 Bidirectional

transformation
Does the tool support bidirectional transformations? {Yes/No}

16 traceability Does the tool handle traceability of transformations, i.e., can it maintain traces of the

source and targets of a transformation?

{Yes/No}

17 DSM language support Is there support for defining domain-specific modelling languages (e.g., UML

profiling) and DSM transformations? {Yes/No}
1 MOF - Meta Object Facility. XMI - XML Metadata Interchange [81]

Once presented the evaluation framework we apply it to the tools of interest.

Deliverable 1.1. State of the art analysis

Copyright © 2015, DICE consortium – All rights reserved 37

B.5.1 Palladio Component Model

The Palladio Component Model (PCM) [154] captures the software architecture with respect to static

structure, behaviour, deployment/allocation, resource environment/execution environment, and usage

profile. In the PCM software is described in terms of components, connectors, interfaces, individual service

behaviour models (so-called Service Effect Specifications, SEFF), servers, middleware, virtual machines,

network, the allocation of components and servers, models of the user interaction with the system etc.

Overall, the PCM captures multiple views of software systems including elements which affect the extra-

functional properties (e.g. performance, reliability etc.) of software systems [154]. Table 7 presents

evaluation framework from Table 6 applied to Palladio Component Model.

Table 7: Evaluation framework from Table 6 applied to Palladio Component Model.

1 Yes, tool called ‘PCM-Bench’, which enables software developers to create instances of the PCM meta-model

2 No

3 No info given

4 Model-to-model transformation from a PCM instance to an SRE instance are performed with Java

5 Yes, model-to-text transformation based on the openArchitectureWare (oAW) framework generates code

skeletons from PCM model instances. The implementation uses either Plain Old Java Objects (POJOs) or

Enterprise Java Beans (EJBs) ready for deployment on a J2EE [70] application server

6 Model validation by checking OCL [72]constraints

7 Yes

8 Yes, the PCM is a meta-model designed to describe component-based software architectures in order to

analyse performance properties

9 Yes

10 Model instances can be serialised to XMI-files

11 Yes

12 No

13 No

14 Yes

15 No

16 No

17 No

B.5.2 VIATRA2

The main objective of the VIATRA2 [155]-[157](VIsual Automated model TRAnsformations) framework

is to provide a general-purpose support for the entire lifecycle of engineering model transformations

including the specification, design, execution, validation and maintenance of transformations within and

between various modelling languages and domains.

Table 8 presents evaluation framework from Table 6 applied to VIATRA2 model transformation tool.

Deliverable 1.1. State of the art analysis

Copyright © 2015, DICE consortium – All rights reserved 38

Table 8: Evaluation framework from Table 6 applied to VIATRA2 framework.

1 Yes. Models and meta-models are all stored uniformly in the VPM model space, which provides a very

flexible and general way for capturing languages and models on different meta-levels and from various

domains (or technological spaces).

2 No

3 Yes, VTCL transformation language [155]

4 Yes, Intra model transformations and Inter model transformation, both of these transformation categories are

supported by the transformation language of the VIATRA2 framework.

5 Yes, VIATRA2 supports mode-to-code generation in different ways

6 [155]

7 Yes

8 Yes, standard metamodelling paradigms are integrated into VIATRA2 by import plugins.

9 Yes

10 Yes

11 Yes

12 Yes

13 Yes

14 Yes

15 No

16 Yes

17 Yes

B.5.3 UML transformation tool

UML Transformation tool (UMT) [158] is a tool to support model transformation and code generation

based on UML models in the form of XMI [81]. This is a generic tool, so it does not provide models in a

concrete formalism, but the environment for obtaining them. Table 9 presents evaluation framework from

Table 6 applied to UML transformation tool.

Table 9: Evaluation framework from Table 6 applied to UML transformation tool.

1 No. There is no support for specifying models in UMT. It relies entirely on imported models from UML

tools

2 No. There is no graphical notation for model transformation

3 Yes. UMT uses XSLT and Java as transformation languages, with possibility of extending to support

other languages

4 No

5 Yes. Model-to-text transformation is the main functional domain for UMT

Deliverable 1.1. State of the art analysis

Copyright © 2015, DICE consortium – All rights reserved 39

6 No. There is no support for model analysis, except for very simple support for checking of a model’s

conformance to simple profiles

7 No. There is no support for management of QoS

8 No. UMT only targets the UML meta-model and is not flexible with respect to changing this

9 No. There is no integration with MOF

10 Yes. UMT imports UML/XMI files from different UML tools

11 Yes

12 No. There is no support for specifying UML models. UMT relies wholly on model input from external

UML tools

13 No. There is no direct UML tool integration. Integration is indirect through XMI

14 There is lightweight support for regenerating code without overwriting previously generated and modified

code

15 No. There is no direct support for bidirectional transformation. However, there is some support for reverse

engineering of code to XMI models

16 No

17 The tool does not provide support for defining DSM languages. It provides support for transformations of

DSM languages. E.g., transforming one DSM-based model to another DSM-based mode

B.5.4 Other tools

The following tools have poor information and we could not fill the evaluation framework. So we provide a

brief description of them.

B.5.4.1. CARiSMA
The CARiSMA [80] core is independent from any particular modelling language. It is just based on the

Eclipse Modelling Framework (EMF). CARiSMA enables compliance analyses, risk analyses, and security

analyses of software models. A flexible architecture makes CARiSMA extensible for new languages and

allows users to implement their own compliance, risk, or security checks.

B.5.4.2. UPUPA (fUML and Profiles for Performance Analysis)
Upupa [159] considers non-functional properties of a software system early in the development process.

UPUPA develops a model-based analysis framework based on the Foundational Subset for

Executable UML Models fUML [160] for enabling the implementation of model-based analysis tools. This

framework enables to carry out model-based analysis of non-functional properties of a software system

based on runtime information in the form of traces obtained by executing UML models using the fUML

virtual machine. Therefore, the framework integrates UML profile applications with execution traces to

enable the consideration of additional information captured in profile applications in the model-based

analysis as required for instance in performance analysis.

B.5.4.3. QVT and Related Technologies
QVT stands for Query-View-Transformations [161], a generic, all-purpose model transformation and

manipulation language standard that goes along with Model-Driven Architecture (MDA) standard [57] to

support its purposes and intent. QVT is an OMG [58] standard and, in essence, it defines a standard way in

which model transformation shall take place, using standard elements and operational transformation

behaviour. QVT defines standard views in which model information can be presented and manipulated, e.g.

in order to migrate a Platform-Independent Specification into a Platform-Specific one. The most widely

Deliverable 1.1. State of the art analysis

Copyright © 2015, DICE consortium – All rights reserved 40

known technology related to QVT resides within the eclipse foundation model-manipulation environment,

i.e. AMMA [162]. AMMA features Atlas Transformation Language (ATL) [163], which is a QVT-like

model transformation language, with its own abstract syntax and environment. The transformation is itself

a model conforming to a specific meta-model. This, for example, permits the creation of higher order

transformations, i.e., transformations that produce ATL transformations.

B.5.5 Summary

DICE will need to implement Model-to-Model (M2M) transformations extensively. First at UML level,

from the DPIM (DICE Platform Independent Model) to the DTSM (DICE Technology Specific Model),

and from the latter to the DDSM (DICE Deployment Specific Model). Second, on the DDSM an M2M

transformation will be useful for yielding the TOSCA deployment (see Section B.6). Third, each UML

diagram in the DIA design needs to be translated into the corresponding target formal model, which

comprises a combination of formalisms and UML diagrams at different abstraction levels (DPIM, DTSM

and DDSM). The third kind of M2M transformation needs to take into account the DICE stereotypes and

tags for parameterising the formal models and for extracting the quality requirements expressed as SLAs.

However, from the analysis of tools we carried out in this section we found the following conclusions.

First, there is no tool that can be reused for M2M transformations in the context of DICE. Second, the

framework in [153] should guide the development of the M2M DICE transformation tool, which means to

try to develop a tool able to answer ‘Yes’ to as many as possible of the framework questions.

B.6. Deployment modelling with TOSCA
TOSCA stands for ‘‘Topology and Orchestration Specification for Cloud Applications’’ [164]. In the hands

of TOSCA lies the state of the art for deployment solutions that are both technology independent and multi-

compliant. This intrinsic characteristic stems from the joined interplay within which TOSCA was originally

specified, i.e., the OASIS standardisation effort. Within the OASIS TOSCA Technical Committee (TC) big

industrial players (e.g., IBM, Huawei, Ericsson) defined the essential elements for the purpose of providing

easily deployable specifications for cloud applications in all its aspects, including, but not limited to,

Network Function Virtualisation, Infrastructure Monitoring and similar. Essentially, quoting from the

TOSCA specification 1.0 [164], ‘‘TOSCA [...] uses the concept of service templates to describe cloud

workloads as a topology template, [...]. TOSCA further provides a type system of node types to describe the

possible building blocks for constructing a service template, as well as relationship type to describe

possible kinds of relations’’. Figure 12 outlines the essential concepts within TOSCA and their respective

relation:

Deliverable 1.1. State of the art analysis

Copyright © 2015, DICE consortium – All rights reserved 41

Figure 12. Main TOSCA concepts and their relations [164].

Currently, the working group around TOSCA is focusing on the following key activities:

(a) Interoperation and Industrial Adoption - this activity is pursued by working on two fronts: (1) from a

more ‘‘soft’’ perspective, the group has enacted a fine-grained demoing strategy involving conferences and

practitioner events (e.g. Open Source CONvention OSCON 2015 [165]); (2) from a more technical side,

the group is working on providing additional constructs needed within industrial practice and ad-hoc node

specifications (e.g., ‘compute’ and ‘store’ nodes, etc.). Most of the above activities are carried out by the

TOSCA-TC SubCommittee (SC) on interoperability [166]. Currently the SC is concentrating on

conducting adoption, interoperation and validation experiments with industry partners.

(b) Network Function Virtuali sation (NFV) - this activity is pursued by defining concepts and relations

connected to Software-Defined Networking and ad-hoc TOSCA constructs that may be compatible with

said technology. Also, in the scope of these activities the TOSCA-TC is working to define ad-hoc design

patterns (e.g. ad-hoc required and provided properties within topology templates) that match the reasoning

and logical assumptions behind NFV.

(c) Language Simplification - this activity is pursued by incrementally refining a simplified TOSCA re-

interpretation in YAML (YAML Ain’t Mark-up Language) [167] - a human-readable mark-up language

capable of sensibly reducing the learning curve behind TOSCA. The YAML specification is currently at

revision 15 and has not reached stability yet.

(d) TOSCA Marketing and Dissemination - in the scope of dissemination TOSCA has defined a specific

sub-committee was entrusted with the investigation of containment technologies (e.g. Docker, see Section

B.7.4) and their relation to TOSCA, with particular focus on how such technology can be used to improve

TOSCA notations and their value proposition. TOSCA defines its own Cloud Service ARchive (CSAR)

containment technology in an abstract way, e.g. to encompass Docker or similar technological solutions. In

this regard, TOSCA can be said to profile current containment technology. This group is interoperating

strongly with an ad-hoc containment group taking care of the CSAR area of TOSCA.

In the scope of the definition of the DICE profile, TOSCA and TOSCA-ready specifications play a key role

in enabling designers at the DDSM level to realise seamless auto-generation of TOSCA-ready templates.

These templates can be in turn deployed on TOSCA-enabled orchestration engines (see Section B.7).

B.7. Deployment tools

B.7.1 Overview

Setting up virtual machines and bare-metal machines, management of network connectivity, installing and

configuring software are inevitable parts of operating with computation centres and clouds. Performing

these tasks manually is an involved and error-prone activity, which also scales badly. Over the decades the

IT industry advanced far enough to enable most if not all of these activities to be performed automatically

through scripting.

Scripting has an advantage of making all processes repeatable. However, scripted solutions are only

applicable to the platforms (operating systems, kernel versions, installed libraries etc.) that they have

originally been built for. To abstract specifics of operating systems and their distributions, tools exist,

which offer the configuration described in a Domain-Specific Language (DSL). This frees the user to focus

on describing the nodes leaving the distribution-specific operations to the tool’s drivers (also called

providers in some of the tools).

Deliverable 1.1. State of the art analysis

Copyright © 2015, DICE consortium – All rights reserved 43

B.7.3.2. Cloudify
Cloudify is a cloud application orchestrator [175] supporting a wide variety of platforms and

infrastructures. It accepts blueprints formatted in a TOSCA-compliant YAML [167].

Because of its reliance on Chef, Puppet and other configuration tools, the Big Data building blocks are well

supported. The author’s own words are that their original goal was ‘to make Big Data deployments a first-

class citizen within Cloudify’ [176]. Cloudify seems as a consolidated technology with strong points in

modelling and deployment of cloud specs. These might come in handy during DICE, especially in terms of

their usage as a case-study or TOSCA usage scenario.

B.7.3.3. Alien4Cloud
Application LIfecycle ENablement for Cloud [177] aims to help in designing applications and

collaboration during the design by employing the TOSCA YAML documents for describing applications.

They offer a Graphical User Interface (GUI) for managing blueprints (called topologies) and monitoring

deployment progress. One of the core functionalities behind this technology is, quoting from the home site:

‘Create or reuse portable TOSCA blueprints and components. Leverage your existing shell, Chef or Puppet

scripts’ [177]. These features suggest that Alien4Cloud may easily be integrated in the various

methodological and technological phases intended in the definition and application of the DICE profile.

The tool relies on third party tools such as Cloudify [175] for the actual deployment. The project is in the

early stages of the initial releases.

B.7.3.4. Apache Brooklyn
The Apache Brooklyn [178] is another project using blueprints for describing applications. Its aim at the

orchestration is to enable also the application’s runtime management with the ability to express SLA-like

policies and associated actions. The policies rely on the metrics from the monitoring services, which

Brooklyn supports. The actions can only be expressed in Java Virtual Machine (JVM). Currently Brooklyn

supports OASIS CAMP [179], but they also plan to support TOSCA.

B.7.3.5. Flexiant Cloud Orchestrator
Flexiant Cloud Orchestrator (FCO) [180] is a world-leading Cloud Orchestration Software solution. FCO

provides service providers the ability to design, create and manage their own virtual public, private or

hybrid cloud solutions.

With Flexiant Cloud Orchestrator, a data centre operator can manage an entire cloud solution, from

hardware, network and storage management through to metering, billing & customer/end-user self-service.

The FCO uses Chef recipes [49] for managing the configurations, and therefore supply the Big Data

building blocks.

B.7.3.6. Rundeck
Rundeck [181] is an open source software that is designed to automate operational procedures in cloud

environments. Rundeck allows tasks to be run on any number of nodes/Virtual Machines (VMs) using a

GUI or command line interface. It does this by working in tandem with solutions such as Chef [49] or

Puppet [48] and acts as a command and control portal that lets users execute commands using features like

node filtering and parallel execution.

B.7.3.7. CAMF
CAMF [182] focuses on three distinct management operations, particularly application description,

application deployment and application monitoring. To this end, it adopts the OASIS TOSCA open

specification for blueprinting and packaging Cloud Applications. Being the part of the Eclipse Software

Deliverable 1.1. State of the art analysis

Copyright © 2015, DICE consortium – All rights reserved 44

Foundation, part of the CAMF code will be made freely available and open source under Eclipse Public

License v1.0 [84].

B.7.3.8. CELAR
A relevant background is also the CELAR project [183] and the related tool-support within Eclipse, i.e., c-

Eclipse. The CELAR project is an initiative specific for multi-cloud elasticity provisioning. In realising

said elasticity provisioning services, CELAR and connected tool-bases are working to implement and

gradually extend a deployment engine featuring specific TOSCA templates. As part of the Eclipse

ecosystem the complete source code of c-Eclipse is made available under the terms of the Eclipse Public

License v1.0 [84]. Similarly, a part of the CELAR project code responsible for automated deployment will

also be made freely available as well.

B.7.3.9. Open-TOSCA
Open-TOSCA is an open source initiative from the university of Stuttgart to develop open source TOSCA

modelling/reasoning and orchestration technologies including support for modelling via the Winery

modelling technology [184] as well as TOSCA containment modelling via an ad-hoc OpenTOSCA

Container and instantiation via the VinoThek self-service instantiation portal [185]. Because it is composed

of a set of technologies, Open-TOSCA does not have a clear and homogeneous open source licensing

model as a single product. Rather, individual licensing has to be evaluated for the single modules it is made

of.

B.7.3.10. Tools analysis

Table 10 provides comparative summary of deployment orchestration tools described in detail in the

sections B.7.3.1-B.7.3.9.

Table 10: Comparative summary of deployment orchestration tools.

Tool name License Input

format

Configuration

support

Native cloud

support

First

release

Latest

release

Ubuntu Juju

[172]

AGPL

[186]

Command

line, YAML

[167]

Juju Charms [173]

- hooks and actions

run executables in

target environment

OpenStack, AWS

[192], ...

at least 2

years ago

May 2015

(recent)

Cloudify

[175]

Apache

License

License 2.0

[187], UI

commercial

(currently

free)

TOSCA

YAML

Scripts, Chef [49],

Puppet [48] ,

SaltStack [168],

OpenStack API

[188], CloudStack

[189], custom

plugins

OpenStack,

SoftLayer [193],

Apache CloudStack,

VMware vSphere

[194] and vCloudAir

[195]; plug-ins for

AWS,...

February

2012

(3 years

ago)

December

2014

(4 months

ago)

Alien4Cloud

[177]

Apache

License 2.0

interactive

GUI; YAML

internally

(via

Cloudify

[175])

see Cloudify see Cloudify Q1 2015

(in

progress)

Apache

Brooklyn

Apache

License 2.0

CAMP-

compliant

YAML[167]

+ JVM plug-

Chef, SaltStack,

scripts

‘many supported’,

leverages Apache

jclouds [196]

January

2013 (2

years ago)

December

2014

(4 months

ago) - version

Deliverable 1.1. State of the art analysis

Copyright © 2015, DICE consortium – All rights reserved 45

[178] ins, RESTful

API

0.7.0

Flexiant

Cloud

Orchestrator

[180]

FCO

custom

license

GUI,

SOAP/REST

API

Chef, FCO

Blueprints [190],

FCO Triggers

[191]

FCO

-Hypervisors

supported

Virtuozzo

Xen 4

KVM

VMware vSphere

Hyper-V 2012 [197]

2007 April 2015

(recent)

Rundeck

[181]

Apache

License 2.0

GUI,

Command

Line

Chef, Puppet,

Jenkins (see

Section B.8.2)

Using configuration

frameworks any

cloud platform can

use.

2010 April 22 2015

V2.5

CAMF [182] Eclipse

Public

License 1.0

[84]

TOSCA

XML (GUI

in Eclipse)

Chef ‘many supported’,

leverages Apache
Java Multi-Cloud

Toolkit (jclouds)

[196]

under

developm

ent,

started

2013

not released

yet

CELAR

[183]

Apache

License 1.0

TOSCA Unknown [183] CELAR Server-

based (for the

moment) but

 environment is

under definition

under

developm

ent,

started

2013

not released

yet

Open-

TOSCA

[184], [185]

No license TOSCA Implementation

Artefacts Engine

supporting plugins

OpenStack, AWS April

2015 (1

month

ago)

April 2015

(1 month

ago)

B.7.4 Virtualisation and containers

Orchestration tools use description of services and applications to be deployed at a high level, but they need

to handle the actual deployment and configuration also at the low level. The possibilities of where and how

to instantiate the needed building blocks are only limited by the target environment's support and the

drivers included in the orchestration and configuration tools. Currently the most common means of

provisioning and deploying resources is to create and use virtual machines in an IaaS environment.

Virtualisation enablers are the hypervisors such as KVM, Xen or VMWare [197]. Newer hypervisors aim

to offer light-weight, simplified or faster execution from the traditional ones. A peer H2020 project

MIKELANGELO [198] is going to produce a faster, lightweight software stack for virtualisation under

widely adopted and supported OpenStack [188].

The increasingly popular alternative to virtualisation is using containers. The containers rely upon the Unix

container technology which has been available for a long time, but have only recently received a good

support for management and portability of the applications within containers. Docker [199] and LXC [200]

are only two of the representatives. Docker in particular offers to package a service or an application in a

container, creating a lower footprint on the overall execution environment and increasing the portability of

the application.

Deliverable 1.1. State of the art analysis

Copyright © 2015, DICE consortium – All rights reserved 46

The concept opposite to the virtualisation and containers is using the whole bare-metal computer as a

computational unit (MaaS - Metal as a Service). This is possible through standards such as Intelligent

Platform Management Interface (IPMI) [201].

In DICE we aim to support the ability to deploy the building blocks first in the more popular environment such as the

virtualisation in the IaaS. For the more advanced releases, we will also look into offering an ability to deploy parts of

the applications using Docker containers and the OSV [202] virtualisation.

B.7.5 Summary

In DICE we are aiming to support standards, and the OASIS TOSCA is an important one. We will base our

solution on one of the more stable and powerful TOSCA-compliant orchestration tool. At the time of the

analysis, Cloudify [175] is a tool which has been available for several years, while its support and

development are still strong. Its command-line and RESTful interface is perfect for our use, where the users

never need to see the orchestrator directly. Also its reliance on jclouds [196] as the abstraction of the IaaS

and the extendibility enable its potential use in a variety of cloud providers, including the Flexiant Cloud

Orchestrator [180] as the dedicated testbed in the DICE project. The choice is further enforced because

another solution - Alien4Cloud [177] - uses it as a basis. Alternatively, Apache Brooklyn [178] promises to

add support for TOSCA in the upcoming months, making it also worth considering.

For the low-level configuration management, we plan to use Chef [49]. The competition at this level is

high, but Chef stands out because the DICE developers have a higher familiarity with Chef, and there is a

potential for reusing pre-existing cookbooks and recipes.

B.8. Continuous integration tools
The software engineering practice where the developers merge their development changes into the shared

mainline daily or even more frequently has been named Continuous Integration (CI) [203], [204]. The

practice enables both a higher rate of software releases as well as a greater confidence in the quality of the

produced code. The latter also depends on a well-built development and testing environment, and on the

developers adhering to the test-driven approaches of the development. The overall idea is that the

developers perform code and project validation with every change, working towards the code which does

what is expected from it, while at the same time it does not break any other parts of the application. By

often integrating changes introduced concurrently by different members of the team, the developers find

and resolve conflicts while they are smaller and easier to resolve. continuous integration is therefore an

important element of the Application Lifecycle Management and thus crucial to the DevOps ecosystem.

The code validation takes many forms, from preparing and running unit tests at the small scale to

integration tests to test multiple modules, services and even systems. This can easily include assessment of

the quality of each deployment, giving both a binary response (pass/fail) as well as softer ones to help drive

the development and the improvements. In DICE we have set out to offer the tools to perform such

evaluation, and while it will be possible to execute them manually, the native way of using them in DICE

will be via the continuous integration.

The tools implementing the continuous integration handle one or more jobs, each of which can be triggered

manually, periodically or by some service or another job. The jobs typically follow a pattern of obtaining

the latest code changes from a Version Control System (VCS) such as Git (see Section B.9.1.3) or

Subversion (SVN) (see Section B.9.1.2), saving them in their local space. Then they attempt to build the

project and save the output of the successful builds (binaries, executables, libraries etc.) in an artefact

repository. Finally, they run any verification provided by the developers with the code, indicating whether

an application functions as expected or fails at any point.

Deliverable 1.1. State of the art analysis

Copyright © 2015, DICE consortium – All rights reserved 47

The process pipelinedescribed above issues and indication when the project baseline breaks. Certain early

criticisms of the continuous integration approach [205] pointed out that this indication only happens after

the fact, halting the development process for everyone involved. The side effect of this is that the

developers approach commits under stress and fear of breaking the build, while at the extreme case the

developers start to ignore the failure notifications from the continuous integration tools. These problems

can largely be avoided by employing code review steps where the tools verify the merged commit before

the actual merge.

The continuous integration jobs can also perform fully custom actions and steps, so any project team is free

to follow their own patterns and use their own tools when building and testing their application.

Here we review the tools with active development and recent latest releases. A more comprehensive

overview is available at the ThoughtWorks website [206], but the information there is partially outdated.

B.8.1 TeamCity

TeamCity is a part of the JetBrains’ commercial offering in their Teamware suite [207]. It natively supports

Java, .NET [71], Ruby [103] and XCode [208] languages and environments. Many other languages are

supported via plug-ins.

TeamCity supports a remote run feature which performs a check of a build before it is committed into the

baseline branch. The feature works from a TeamCity plug-in in Eclipse or other IDE and does not involve

the branches in VCS.

The tool also natively supports many build agents, code coverage tools and a code change inspector for the

Java code projects. Build agents can run distributed in various locations and host environments to address

load distribution and specific requirements of multi-platform builds.

B.8.2 Hudson / Jenkins

Jenkins [209] is a highly popular open source CI tool. It is a fork of the Hudson [210] tool, and both still

exist and are actively developed, although Jenkins reportedly has a larger developer community and a

higher installation base [211]. Originally the tool had a high level of support mostly for the Java-centric

projects. However, currently a wide selection of plug-ins provide support for other types of projects as well

(e.g. Python [128], Ruby [103] etc.). The plug-ins can extend the default functionality for the majority of

aspects of the CI jobs, including the build steps and the means of sending job result notifications. It is

possible to publish the plug-ins in a Jenkins plug-in directory.

Both Hudson and Jenkins are created in Java [99]. Therefore, they can be installed in any operating system

or Linux distribution. Each installation can be a fully-featured installation or a small slave agent installation

used in a distributed build agent set-up.

B.8.3 Atlassian Bamboo

Atlassian’s Bamboo [212] is a commercial offering which works as a standalone service, hosted in the

Atlassian’s cloud or installed in the customer-controlled environment. It natively includes integration with

the JIRA issue tracking service [213], and the Stash code versioning management system [214]. Bamboo

emphasises the support for continuous delivery, providing releases in multiple environments. The

commercial nature of the project is also evident in solutions easing the continuous integration management

with grouping jobs in chained stages, simplified management of distributed version control systems’

branching, as well as general support for migrating from popular open source tools such as Jenkins [209].

Nevertheless, it offers RESTful API to support custom add-ons.

Deliverable 1.1. State of the art analysis

Copyright © 2015, DICE consortium – All rights reserved 48

B.8.4 Go

An open source continuous integration and delivery tool from ThoughtWorks called Go [215] focuses on

handling complex pipelines, chaining jobs according to their dependencies in a directed graph with possible

fan-out and fan-in. Naturally it also supports integration with other ThoughtWork projects such as the agile

project management tool Mingle [216].

B.8.5 Strider CD

The Strider CD [217] is a relatively recent solution for continuous integration and Continuous

Development. It is built on lightweight technology such as node.js [218] and promises a high level of

customisability by supporting the plug-ins. The authors focus on improved user experience and automation.

VCS branches can have different jobs attached to them.

B.8.6 BuildBot

The BuildBot [219] is a framework for continuous integration emphasising the flexibility and providing the

tools for complex projects which mix technologies and languages. The jobs are configured using Python

scripts [128]. This means they can be simple, but, if needed, provide the ability to dynamically configure

builds and jobs. In the complex software projects it is possible to use a concept of source stamping to

include dependencies from various VCS projects, and the built-in versioning system helps manage the

dependencies.

B.8.7 CircleCI

The CircleCI [220] is a hosted environment for continuous integration. It advertises the speed of the job

execution. This is achieved by the timing of the builds and their subsequent distribution into parallel builds

based on this timing. Each job gets its own Docker environment [199], so each build is clean and

independent of any previous builds. Natively it also provides support for virtual graphical frame buffer

using Xvbf [221] in Linux. Table 11 provides comparative summary of continuous integration tools

described in details in the sections B.8.1-B.8.7.

Table 11: Comparative summary of continuous integration tools.

Tool name License
Eclipse

plug-in

Supports

custom

plug-ins

Job control First release Latest release

TeamCity

[207]

commercial

with a limited

free license

Yes Yes Web GUI,

RESTful

July 2006

(9 years ago)

December 2014

(6 months ago)

Hudson [210] Eclipse EPL

license [84]

Yes Yes Web GUI,

RESTful

Summer 2004

(11 years ago)

January 2015

(4 months ago)

Jenkins [209] MIT License

[222]

Yes Yes Web GUI,

RESTful

February 2011 (4

years ago) -

forked from

Hudson

May 2015 (recent)

Atlassian

Bamboo

[212]

commercial Yes Yes Web GUI,

RESTful

February 2007 (8

years ago)

November 2011

(6 months ago)

CircleCI

[220]

commercial,

hosted only

No No Web GUI,

RESTful

unknown recent

ThougtWorks

Go [215]

Apache

License 2.0

[187]

N/A Yes Web GUI,

RESTful

7 years ago April 2015

(1 month ago)

Deliverable 1.1. State of the art analysis

Copyright © 2015, DICE consortium – All rights reserved 49

Strider CD

[217]

BSD License

[223]

No Yes Web GUI,

RESTful

July 2013

(2 years ago)

March 2015

(3 months ago)

BuildBot

[219]

GPL 2 No Yes Web GUI,

RESTful

March 2006

(9 years ago)

April 2015

(2 months ago)

B.8.8 Summary

DICE DevOps support tools naturally aim to support the continuous integration and Continuous

Deployment. The tools used will represent the glue between the development and simulation work on the

one side, and automated deployment and application’s execution on the other side. The selection is wide

and strong, but DICE needs to offer an open source solution. Of the ones that comply with this requirement

and have also a strong community, active support and a high level of adoption, Jenkins [209] is certainly at

the top. It is also the solution favoured by many DICE partners for their own internal or collaborative

projects. As a good alternative, BuildBot [219] also offers a good support for highly customised solutions.

The commercial solutions will likely serve as an inspiration in terms of the features to consider and support

in the DICE continuous integration. For instance, the CircleCI’s ability to provide headless testing of

graphical interfaces (as required by the Selenium library (see Section C.11.2.3) for testing the web GUI

applications) may become useful for providing quality tests.

B.9. Versioning of software engineering artefacts.
The purpose of versioning is to map a complex system of software components to a commonly and easily

understood name or number. This helps the users understand which functionality to expect from a certain

component’s version. Considering that few systems operate on their own, the versioning also helps in

defining which components are compatible and possible to co-operate. The actual version assignments are

ultimately the responsibility of the developers and their project leaders. No system can perform version

assignment in a fully automated way. It is also highly dependent on the purpose and type of software being

versioned [224]. However, it is a common and recommended practice to use a system which automatically

assigns revisions to each change.

DevOps methodology advocates DevOps teams to version everything in their environment: application

code, infrastructure, configuration, data, and internal system artefacts. The major aspect of the systems

providing the versioning control is that they provide history of changes in the code and the ability for the

collaborating teams to obtain a consistent view of the whole project at any time. In combination with

continuous integration it is possible to also always be able to obtain a tested and stable version from the

change history.

B.9.1 Classical versioning tools

The versioning control systems - more accurately named revision control systems or source control systems

[225] - are roughly divided into two categories: centralised systems (represented by the CVS [226] and the

Subversion [227]) and distributed systems (Git [228] and Mercurial [231]).

B.9.1.1. CVS
The Concurrent Versions System [226] is one of the earlier representatives of the centralised source control

system. It serves the basic purpose of keeping the change history, but its method of checking in single files

makes it unsuitable for modern DevOps.

B.9.1.2. Subversion
Subversion or SVN [227] is a software versioning tool from Apache distributed as free software under the

Apache License 2.0 [187]. It is mainly used for revision control of source code but also for any kind of

http://git-scm.com/

Deliverable 1.1. State of the art analysis

Copyright © 2015, DICE consortium – All rights reserved 51

B.10. Discussion
In this chapter we gave an overview of a large set of approaches and tools that are related both to

development and operation and, in most cases, have been developed in a completely independent way by

research and practitioners.

Referring to Figure 13 that shows the DICE high level vision, this state of the art analysis has been drawn

within the context of DevOps (Section B.2) that is the movement within which DICE aims at operating.

The DICE methodology (on the left hand side of the figure) will be defined keeping the DevOps principles

in mind. Moreover, it will be based on Model-Driven Engineering (Section B.3) and will take its roots from

the existing model-driven approaches focusing on cloud and DIA applications. The IDE (the box in the

Figure 13 that encloses four different tools) will be developed starting with modelling tools such as Papyrus

[83] and MOSKitt [97]. These tools allow us to let DICE users exploiting the DICE profile - which will be

built as part of the MARTE profile [68] - model DIAs and interact through proper connectors using tools

that support simulation, optimisation, creation of deployment recipes and analysis of testing results. Model

to model transformations (Section B.4) will be used to support the generation of different views on a DIA

model. Such views can either be used to support the transition from high level design of a DIA to the

selection of Data-Intensive technologies and to the deployment on the cloud, or they can be used to

transform models in a way that is suitable for specific analyses and simulation activities. TOSCA (Section

B.5) will be used as an output format representing the deployable model of a DIA. Such format will be

provided as input to the deployment and management tool that will be based on those reviewed in Section

B.6. Finally, the continuous integration tools (Section B.7) will be used as the basis to support the DICE

integration phase, keeping in mind that in our approach the emphasis is not only on integrating, building

and deploying code but also on managing and continuously evolving model. Of course, models’ and

components’ evolution results in the need for keeping track of different versions and of the relationships

between the various components versions. An analysis of the literature in this field is provided in Section

B.9 and is strictly correlated to the continuous integration approaches of Section B.8.

Figure 13. DICE high level vision [237].

